Wavelets direct method for solving volterra integral-algebraic equations

被引:1
作者
Sohrabi, S. [1 ]
机构
[1] Urmia Univ, Fac Sci, Dept Math, Orumiyeh 5756151818, Iran
关键词
Integral-algebraic equations; Legendre wavelets; Operational matrix; Error estimate; NUMERICAL-SOLUTION; COLLOCATION METHOD; SYSTEMS;
D O I
10.1007/s13370-023-01135-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the numerical solutions for Volterra type integral-algebraic equations (IAEs) via a direct method using Legendre wavelets (LWs). Using the operational matrix associated with Legendre wavelets the problem is transformed to a linear system of algebraic equations. This approach does not use any variable transformations, so all calculations can be easily implemented. Convergence rate and numerical examples are presented to illustrate the efficiency and applicability of the method.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A novel method with convergence analysis based on the Jacobi wavelets for solving a system of two-dimensional Volterra integral equations
    Behera, S.
    Ray, S. Saha
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (03) : 641 - 665
  • [22] NON-UNIFORM HAAR WAVELETS METHOD FOR SOLVING LINEAR STOCHASTIC ITO - VOLTERRA INTEGRAL EQUATIONS
    Montazer, Meisam
    Khodabin, Morteza
    Ezzati, Reza
    Fallahpour, Mohsen
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (03): : 105 - 116
  • [23] Numerical solution of integral-algebraic equations for multistep methods
    O. S. Budnikova
    M. V. Bulatov
    Computational Mathematics and Mathematical Physics, 2012, 52 : 691 - 701
  • [24] NUMERICAL SOLUTIONS OF THIRD KIND INTEGRAL-ALGEBRAIC EQUATIONS
    Bellour, Azzeddine
    Rawashdeh, E. A.
    MATEMATICKI VESNIK, 2011, 63 (03): : 223 - 233
  • [25] Legendre wavelets Galerkin method for solving nonlinear stochastic integral equations
    Heydari, M. H.
    Hooshmandasl, M. R.
    Shakiba, A.
    Cattani, C.
    NONLINEAR DYNAMICS, 2016, 85 (02) : 1185 - 1202
  • [26] On the convergence of multistep collocation methods for integral-algebraic equations of index 1
    Zhang, Tingting
    Liang, Hui
    Zhang, Shijie
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04)
  • [27] Bernstein polynomials method for solving Volterra-Fredholm integral equations
    Hesameddini, Esmail
    Khorramizadeh, Mostafa
    Shahbazi, Mehdi
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2017, 60 (01): : 59 - 68
  • [28] On Stable Algorithms for Numerical Solution of Integral-Algebraic Equations
    Bulatov, M. V.
    Budnikova, O. S.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2013, 6 (04): : 5 - 14
  • [29] On an algorithm for the numerical solution of quasilinear integral-algebraic equations
    Bulatov, Mikhail
    Indutskaya, Tatiana
    Solovarova, Liubov
    APPLIED NUMERICAL MATHEMATICS, 2025, 208 : 348 - 355
  • [30] Solving mixed Fredholm–Volterra integral equations by using the operational matrix of RH wavelets
    Erfanian M.
    Gachpazan M.
    SeMA Journal, 2015, 69 (1) : 25 - 36