共 13 条
The distinguishing index of graphs with infinite minimum degree
被引:0
作者:
Stawiski, Marcin
[1
,3
]
Wilson, Trevor M.
[2
]
机构:
[1] AGH Univ Sci & Technol, Fac Appl Math, Krakow, Poland
[2] Miami Univ, Dept Math, Oxford, OH USA
[3] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词:
distinguishing colorings;
distinguishing index;
infinite graphs;
regular graphs;
EDGE;
SYMMETRIES;
D O I:
10.1002/jgt.23013
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The distinguishing index D & PRIME;(G) $D<^>{\prime} (G)$ of a graph G $G$ is the least number of colors necessary to obtain an edge coloring of G $G$ that is preserved only by the trivial automorphism. We show that if G $G$ is a connected & alpha; $\alpha $-regular graph for some infinite cardinal & alpha; $\alpha $ then D & PRIME;(G)& LE;2 $D<^>{\prime} (G)\le 2$, proving a conjecture of Lehner, Pilsniak, and Stawiski. We also show that if G $G$ is a graph with infinite minimum degree and at most 2 & alpha; ${2}<^>{\alpha }$ vertices of degree & alpha; $\alpha $ for every infinite cardinal & alpha; $\alpha $, then D & PRIME;(G)& LE;3 $D<^>{\prime} (G)\le 3$. In particular, D & PRIME;(G)& LE;3 $D<^>{\prime} (G)\le 3$ if G $G$ has infinite minimum degree and order at most 2 & ALEPH;0 ${2}<^>{{\aleph }_{0}}$.
引用
收藏
页码:61 / 67
页数:7
相关论文