Carbon Quantum Dots from Roasted Coffee Beans: Their Degree and Mechanism of Cytotoxicity and Their Rapid Removal Using a Pulsed Electric Field

被引:5
作者
Chu, Ling [1 ]
Zhang, Yu [1 ]
He, Leli [1 ]
Shen, Qingwu [1 ]
Tan, Mingqian [2 ]
Wu, Yanyang [1 ,2 ,3 ,4 ,5 ]
机构
[1] Hunan Agr Univ, Coll Food Sci & Technol, Key Lab Food Sci & Biotechnol Hunan Prov, Changsha 410128, Peoples R China
[2] Dalian Polytech Univ, Natl Engn Res Ctr Seafood, Collaborat Innovat Ctr Seafood Deep Proc, Sch Food Sci & Technol, Dalian 116034, Peoples R China
[3] Hunan Agr Univ, Hort & Landscape Coll, Changsha 410128, Peoples R China
[4] Hunan Coinnovat Ctr Utilizat Bot Funct Ingredients, Changsha 410128, Peoples R China
[5] State Key Lab Subhlth Intervent Technol, Changsha 410128, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon quantum dots; coffee; cytotoxicity; pulsed electric field; TOXICITY; BIODISTRIBUTION; NANOPARTICLES; NECROPTOSIS; LYSOSOMES;
D O I
10.3390/foods12122353
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Carbon quantum dots (CQDs) from heat-treated foods show toxicity, but the mechanisms of toxicity and removal of CQDs have not been elucidated. In this study, CQDs were purified from roasted coffee beans through a process of concentration, dialysis and lyophilization. The physical properties of CQDs, the degree and mechanism of toxicity and the removal method were studied. Our results showed that the size of CQDs roasted for 5 min, 10 min and 20 min were about 5.69 & PLUSMN; 1.10 nm, 2.44 & PLUSMN; 1.08 nm and 1.58 & PLUSMN; 0.48 nm, respectively. The rate of apoptosis increased with increasing roasting time and concentration of CQDs. The longer the roasting time of coffee beans, the greater the toxicity of CQDs. However, the caspase inhibitor Z-VAD-FMK was not able to inhibit CQDs-induced apoptosis. Moreover, CQDs affected the pH value of lysosomes, causing the accumulation of RIPK1 and RIPK3 in lysosomes. Treatment of coffee beans with a pulsed electric field (PEF) significantly reduced the yield of CQDs. This indicates that CQDs induced lysosomal-dependent cell death and increased the rate of cell death through necroptosis. PEF is an effective way to remove CQDs from roasted coffee beans.
引用
收藏
页数:16
相关论文
共 43 条
[1]   Presence and Formation Mechanism of Foodborne Carbonaceous Nanostructures from Roasted Pike Eel (Muraenesox cinereus) [J].
Bi, Jingran ;
Li, Yao ;
Wang, Haitao ;
Song, Yukun ;
Cong, Shuang ;
Yu, Chenxu ;
Zhu, Bei-Wei ;
Tan, Mingqian .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (11) :2862-2869
[2]   The effect of pulsed electric fields on carotenoids bioaccessibility: The role of tomato matrix [J].
Bot, Francesca ;
Verkerk, Ruud ;
Mastwijk, Hennie ;
Anese, Monica ;
Fogliano, Vincenzo ;
Capuano, Edoardo .
FOOD CHEMISTRY, 2018, 240 :415-421
[3]   Coffee and tea on cardiovascular disease (CVD) prevention * , ** [J].
Chieng, David ;
Kistler, Peter M. .
TRENDS IN CARDIOVASCULAR MEDICINE, 2022, 32 (07) :399-405
[4]  
Das P, 2022, ACS APPL BIO MATER, V5, P5617, DOI 10.1021/acsabm.2c00664
[5]  
Das P, 2022, ACS APPL POLYM MATER, V4, P9323, DOI 10.1021/acsapm.2c01579
[6]   Toxicological effects of ingested nanocellulose in in vitro intestinal epithelium and in vivo rat models [J].
DeLoid, Glen M. ;
Cao, Xiaoqiong ;
Molina, Ramon M. ;
Silva, Daniel Imbassahy ;
Bhattacharya, Kunal ;
Ng, Kee Woei ;
Loo, Say Chye Joachim ;
Brain, Joseph D. ;
Demokritou, Philip .
ENVIRONMENTAL SCIENCE-NANO, 2019, 6 (07) :2105-2115
[7]  
Desmond LJ, 2021, ENVIRON SCI-NANO, V8, P848, DOI [10.1039/d1en00017a, 10.1039/D1EN00017A]
[8]   Carbon Dots for In Vivo Bioimaging and Theranostics [J].
Du, Jianjun ;
Xu, Ning ;
Fan, Jiangli ;
Sun, Wen ;
Peng, Xiaojun .
SMALL, 2019, 15 (32)
[9]   Environmental characterization of a coffee processing workplace with obliterative bronchiolitis in former workers [J].
Duling, Matthew G. ;
LeBouf, Ryan F. ;
Cox-Ganser, Jean M. ;
Kreiss, Kathleen ;
Martin, Stephen B., Jr. ;
Bailey, Rachel L. .
JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE, 2016, 13 (10) :770-781
[10]   Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 [J].
Galluzzi, Lorenzo ;
Vitale, Ilio ;
Aaronson, Stuart A. ;
Abrams, John M. ;
Adam, Dieter ;
Agostinis, Patrizia ;
Alnemri, Emad S. ;
Altucci, Lucia ;
Amelio, Ivano ;
Andrews, David W. ;
Annicchiarico-Petruzzelli, Margherita ;
Antonov, Alexey V. ;
Arama, Eli ;
Baehrecke, Eric H. ;
Barlev, Nickolai A. ;
Bazan, Nicolas G. ;
Bernassola, Francesca ;
Bertrand, Mathieu J. M. ;
Bianchi, Katiuscia ;
Blagosklonny, Mikhail V. ;
Blomgren, Klas ;
Borner, Christoph ;
Boya, Patricia ;
Brenner, Catherine ;
Campanella, Michelangelo ;
Candi, Eleonora ;
Carmona-Gutierrez, Didac ;
Cecconi, Francesco ;
Chan, Francis K. -M. ;
Chandel, Navdeep S. ;
Cheng, Emily H. ;
Chipuk, Jerry E. ;
Cidlowski, John A. ;
Ciechanover, Aaron ;
Cohen, Gerald M. ;
Conrad, Marcus ;
Cubillos-Ruiz, Juan R. ;
Czabotar, Peter E. ;
D'Angiolella, Vincenzo ;
Dawson, Ted M. ;
Dawson, Valina L. ;
De laurenzi, Vincenzo ;
De Maria, Ruggero ;
Debatin, Klaus-Michael ;
DeBerardinis, Ralph J. ;
Deshmukh, Mohanish ;
Di Daniele, Nicola ;
Di Virgilio, Francesco ;
Dixit, Vishva M. ;
Dixon, Scott J. .
CELL DEATH AND DIFFERENTIATION, 2018, 25 (03) :486-541