An energy-concentrated wavelet transform for time-frequency analysis of transient signal

被引:35
作者
Dong, Haoran [1 ]
Yu, Gang [1 ]
Lin, Tianran [2 ]
Li, Yueyang [1 ]
机构
[1] Univ Jinan, Sch Elect Engn, Jinan 250022, Peoples R China
[2] Qingdao Univ Technol, Sch Mech & Automot Engn, Qingdao 266520, Peoples R China
基金
中国国家自然科学基金;
关键词
Time-frequency analysis; Transient signal; Group delay; Wavelet transform; Time-reassigned synchrosqueezing; transform; Fixed-point iteration; SYNCHROSQUEEZING TRANSFORM; INSTANTANEOUS FREQUENCY; PLANETARY GEARBOX; REASSIGNMENT;
D O I
10.1016/j.sigpro.2023.108934
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Some signals captured in practical applications are usually composed of a series of modes that have multivalued time-dependent instantaneous frequency (IF), i.e., transient signal, which enables some ad-vanced time-frequency analysis (TFA) tools no longer ideal or even ineffective. Fortunately, the group delay (GD) of such signal can be well expressed as a single valued function of frequency. By considering frequency-domain signal model suitable for describing GD, we develop a postprocessing technique called wavelet transform (WT)-based time-reassigned synchrosqueezing transform (WTSST). In WTSST, the TF coefficients diffused in WT are gathered to GD of transient signal aiming to generate a more concentrated time-frequency representation (TFR) and WTSST allows to retrieve the whole or part of signal. Consider-ing analytic WT under Gaussian function, the theoretical analyses of WTSST are provided, which includes the analyses of GD candidate accuracy and signal reconstruction accuracy. Moreover, based on the the-oretical analyses of W TSST, the W T-based time-reassigned multisynchrosqueezing transform (WTMSST) is proposed by introducing a fixed-point iteration scheme, which further improves the shortcoming that WTSST is unable to accurately describe strong frequency-varying signal. Simulation and real signal anal-yses illustrate that the proposed method has capacity to appropriately describe the features of transient signals.
引用
收藏
页数:20
相关论文
共 41 条
[1]   GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙ [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Aronson, S. M. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. ;
Bader, M. K. M. ;
Bae, S. .
PHYSICAL REVIEW LETTERS, 2020, 125 (10)
[2]   Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akutsu, T. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Arai, Koya ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Aritomi, N. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Aso, Y. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V. .
LIVING REVIEWS IN RELATIVITY, 2020, 23 (01)
[3]  
[Anonymous], 1991, Vision Interface
[4]   IMPROVING THE READABILITY OF TIME-FREQUENCY AND TIME-SCALE REPRESENTATIONS BY THE REASSIGNMENT METHOD [J].
AUGER, F ;
FLANDRIN, P .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (05) :1068-1089
[5]   Theoretical analysis of the second-order synchrosqueezing transform [J].
Behera, Ratikanta ;
Meignen, Sylvain ;
Oberlin, Thomas .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2018, 45 (02) :379-404
[6]   Characterization of signals by the ridges of their wavelet transforms [J].
Carmona, RA ;
Hwang, WL ;
Torresani, B .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (10) :2586-2590
[7]   Generalized dispersive mode decomposition: Algorithm and applications [J].
Chen, Shiqian ;
Wang, Kaiyun ;
Peng, Zhike ;
Chang, Chao ;
Zhai, Wanming .
JOURNAL OF SOUND AND VIBRATION, 2021, 492
[8]  
COHEN L, 1992, ICASSP 92 1992 INT C, V1-5, pE113
[9]   Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool [J].
Daubechies, Ingrid ;
Lu, Jianfeng ;
Wu, Hau-Tieng .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2011, 30 (02) :243-261
[10]   Resolution in time-frequency [J].
DeBrunner, V ;
Özaydin, M ;
Przebinda, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (03) :783-788