Study of flow resistance coefficients acting on regular non-spherical particles in simple shear flow at moderate Reynolds numbers

被引:10
作者
Lain, S. [1 ]
Castang, C. [1 ]
Sommerfeld, M. [1 ,2 ]
机构
[1] Univ Autonoma Occidente, Mech Engn Dept, PAI Grp, Cali, Colombia
[2] Otto Von Guericke Univ, Fac Proc & Syst Engn, Multiphase Flow Syst, D-06120 Halle, Saale, Germany
关键词
Particle resolved direct numerical simulation; Non -spherical particles; Regular shape; Flow resistance coefficients; TORQUE COEFFICIENTS; SMALL SPHERE; LIFT FORCE; DRAG; MOTION; MODEL;
D O I
10.1016/j.powtec.2024.119428
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This contribution is devoted to the study of the aerodynamic characteristics of non -spherical particles of definite regular shape, such as prolate and oblate ellipsoids as well as cylinders, immersed in a locally linear shear flow. The flow resistance coefficients of drag, lift and pitching torque are computed by means of the Particle Resolved Direct Numerical Simulation (PR -DNS) technique for such shapes as function of the Reynolds number Re. The parameter space comprises particle aspect ratio, AR, fluid spin ratio, zeta, and particle orientation angle, alpha. The Reynolds numbers of interest are in the intermediate range 1 <= Re <= 100, common in industrial and environmental processes. To properly understand and explain the obtained results, the role of the friction and pressure contributions to total flow coefficients is analyzed in detail for the different cases, allowing the differences between the considered shapes to be pointed out. On the other hand, the behavior of the pressure and skin friction coefficients in the particle plane of symmetry parallel to the flow is investigated as a function of the previous parameters (shape, AR, zeta, alpha), which provides further insights into the features of the shear flow around the nonspherical particles at finite Re. Finally, the influence of the shear flow magnitude and incidence angle on the location of the center of aerodynamic force is devised for the three shapes considered as function of Reynolds number and particle aspect ratio. It is expected that the information generated in this work will be useful for researchers to enhance the modeling of non -spherical particles immersed in non -uniform flows.
引用
收藏
页数:25
相关论文
共 38 条
[1]   Forces and torques on a prolate spheroid: low-Reynolds-number and attack angle effects [J].
Andersson, Helge I. ;
Jiang, Fengjian .
ACTA MECHANICA, 2019, 230 (02) :431-447
[2]   Prolate spheroidal particles' behavior in a vertical wall-bounded turbulent flow [J].
Arcen, B. ;
Ouchene, R. ;
Khalij, M. ;
Taniere, A. .
PHYSICS OF FLUIDS, 2017, 29 (09)
[3]   Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re [J].
Bagchi, P ;
Balachandar, S .
PHYSICS OF FLUIDS, 2002, 14 (08) :2719-2737
[4]   Effect of rough wall on drag, lift, and torque on an ellipsoidal particle in a linear shear flow [J].
Bhagat, Atul Manikrao ;
Goswami, Partha Sarathi .
PHYSICS OF FLUIDS, 2022, 34 (08)
[5]   THE STOKES RESISTANCE OF AN ARBITRARY PARTICLE .3. SHEAR FIELDS [J].
BRENNER, H .
CHEMICAL ENGINEERING SCIENCE, 1964, 19 (09) :631-651
[6]   Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range [J].
Castang, C. ;
Lain, S. ;
Sommerfeld, M. .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2021, 137 (137)
[7]   Drag on non-spherical particles: an evaluation of available methods [J].
Chhabra, RP ;
Agarwal, L ;
Sinha, NK .
POWDER TECHNOLOGY, 1999, 101 (03) :288-295
[8]  
Clancy J.L., 1975, AERODYNAMICS
[9]   Shape and drag of irregular angular particles and test dust [J].
Connolly, Brian J. ;
Loth, Eric ;
Smith, C. Frederic .
POWDER TECHNOLOGY, 2020, 363 :275-285
[10]   A novel model for the lift force acting on a prolate spheroidal particle in arbitrary non-uniform flow. Part II. Lift force taking into account the non-streamwise flow shear [J].
Cui, Yan ;
Ravnik, Jure ;
Verhnjak, Ozbej ;
Hribersek, Matjaz ;
Steinmann, Paul .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2019, 111 :232-240