Effect of cubic and spherical quantum dot size and size dispersion on the performance of quantum dot solar cells

被引:1
作者
Gatissa, Tewodros Adaro [1 ]
Debela, Teshome Senbeta [1 ]
Ali, Belayneh Mesfin [1 ]
机构
[1] Addis Ababa Univ, Dept Phys, POB 1176, Addis Ababa, Ethiopia
关键词
ABSORPTION-SPECTRUM; EFFICIENCY; PHOTOLUMINESCENCE; NONUNIFORMITY; ARRAYS; LAYER; CDSE; CDTE; ZNS;
D O I
10.1063/5.0184745
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We investigated the effect of cubic and spherical quantum dot size and size dispersion (size non-uniformity) on the absorption coefficient of a quantum dot ensemble. The absorption spectra of the cubic and spherical quantum dots (QDs) ensemble are found to be strongly dependent on the average size of QDs and the size distribution of QDs. Furthermore, we studied the effect of cubic and spherical quantum dot size and size dispersion on the QD photocurrent and efficiency of quantum dot solar cells (QDSCs). It is observed that there is an optimum size and size dispersion of QDs to achieve maximum QD photocurrent and efficiency. Embedding InAs QDs into the intrinsic region of a GaAs n-i-p solar cell improves performance from 20.3% to an ideal maximum of 34.4% (QDSC with cubic QD ensembles) and 36.5% (QDSC with spherical QD ensembles). The result shows that spherical morphology is better than cubic morphology. This theoretical study demonstrates that to achieve the highest possible power conversion efficiency, a suitable QD shape, optimized QD size, and size dispersion must be selected.
引用
收藏
页数:18
相关论文
共 43 条
[1]   Quantum dot solar cells [J].
Aroutiounian, V ;
Petrosyan, S ;
Khachatryan, A ;
Touryan, K .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (04) :2268-2271
[2]   Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells [J].
Bailey, Christopher G. ;
Forbes, David V. ;
Raffaelle, Ryne P. ;
Hubbard, Seth M. .
APPLIED PHYSICS LETTERS, 2011, 98 (16)
[3]   Spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell considering the absorption spectra of ideal cubic dots [J].
Biswas, Sayantan ;
Chatterjee, Avigyan ;
Biswas, Ashim Kumar ;
Sinha, Amitabha .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2016, 84 :108-111
[4]   Investigation on current collection from a silicon quantum-dot p-i-n solar cell by varying dot size and insulating barrier layer thickness [J].
Bohra, Shabbir S. ;
Panchal, Ashish K. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART N-JOURNAL OF NANOMATERIALS NANOENGINEERING AND NANOSYSTEMS, 2016, 230 (01) :44-50
[5]   Detailed balance efficiency limits with quasi-Fermi level variations [J].
Bremner, SP ;
Corkish, R ;
Honsberg, CB .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1999, 46 (10) :1932-1939
[6]   Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots [J].
Cao, Yunqing ;
Zhu, Ping ;
Li, Dongke ;
Zeng, Xianghua ;
Shan, Dan .
ENERGIES, 2020, 13 (18)
[7]   Type II broken band heterostructure quantum dot to obtain a material for the intermediate band solar cell [J].
Cuadra, L ;
Martí, A ;
Luque, A .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2) :162-165
[8]   The effects of shape and size nonuniformity on the absorption spectrum of semiconductor quantum dots [J].
Ferreira, DL ;
Alves, JLA .
NANOTECHNOLOGY, 2004, 15 (08) :975-981
[9]   Dependence of quantum dot solar cell parameters on the number of quantum dot layers [J].
Gatissa, Tewodros Adaro ;
Debela, Teshome Senbeta ;
Ali, Belayneh Mesfin .
AIP ADVANCES, 2023, 13 (07)
[10]   Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage [J].
Guimard, Denis ;
Morihara, Ryo ;
Bordel, Damien ;
Tanabe, Katsuaki ;
Wakayama, Yuki ;
Nishioka, Masao ;
Arakawa, Yasuhiko .
APPLIED PHYSICS LETTERS, 2010, 96 (20)