Equivariant variance estimation for multiple change-point model

被引:0
作者
Hao, Ning [1 ]
Niu, Yue Selena [1 ]
Xiao, Han [2 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Rutgers State Univ, Dept Stat, Piscataway, NJ USA
基金
美国国家科学基金会;
关键词
Change-point detection; inference; minimax; quadratic estimator; total variation; unbiasedness; BINARY SEGMENTATION; NUMBER; BREAKS; REGRESSION;
D O I
10.1214/23-EJS2190
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The variance of noise plays an important role in many change-point detection procedures and the associated inferences. Most commonly used variance estimators require strong assumptions on the true mean structure or normality of the error distribution, which may not hold in applications. More importantly, the qualities of these estimators have not been discussed systematically in the literature. In this paper, we introduce a framework of equivariant variance estimation for multiple change-point models. In particular, we characterize the set of all equivariant unbiased quadratic variance estimators for a family of change-point model classes, and develop a minimax theory for such estimators.
引用
收藏
页码:3811 / 3853
页数:43
相关论文
共 39 条
[1]   Strong rules for detecting the number of breaks in a time series [J].
Altissimo, F ;
Corradi, V .
JOURNAL OF ECONOMETRICS, 2003, 117 (02) :207-244
[2]   Near-optimal detection of geometric objects by fast multiscale methods [J].
Arias-Castro, E ;
Donoho, DL ;
Huo, XM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (07) :2402-2425
[3]  
Arlot S, 2019, J MACH LEARN RES, V20
[4]   Estimating and testing linear models with multiple structural changes [J].
Bai, JS ;
Perron, P .
ECONOMETRICA, 1998, 66 (01) :47-78
[5]   Modelling structural breaks, long memory and stock market volatility: an overview [J].
Banerjee, A ;
Urga, G .
JOURNAL OF ECONOMETRICS, 2005, 129 (1-2) :1-34
[6]  
Berger J.O., 1985, STAT DECISION THEORY, Vsecond, DOI DOI 10.1007/978-1-4757-4286-2
[7]  
Chen J., 2012, PARAMETRIC STAT CHAN, DOI [10.1007/978-0-8176-4801-5, DOI 10.1007/978-0-8176-4801-5]
[8]   Local extremes, runs, strings and multiresolution - Rejoinder [J].
Davies, PL ;
Kovac, A .
ANNALS OF STATISTICS, 2001, 29 (01) :61-65
[9]   Estimating the variance in nonparametric regression - what is a reasonable choice? [J].
Dette, H ;
Munk, A ;
Wagner, T .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 :751-764
[10]  
Eaton M.L., 1989, Group invariance applications in statistics