NON-CENTERED PARAMETRIC VARIATIONAL BAYES' APPROACH FOR HIERARCHICAL INVERSE PROBLEMS OF PARTIAL DIFFERENTIAL EQUATIONS

被引:2
作者
Sui, Jiaming [1 ]
Jia, Junxiong [1 ]
机构
[1] Xian Jiaotong Univ Xian, Sch Math & Stat, Xian 710049, Peoples R China
关键词
Inverse problems; infinite-dimensional variational inference; Bayesian; analysis for functions; partial differential equations; inverse source problem; KULLBACK-LEIBLER APPROXIMATION; COMPUTATIONAL FRAMEWORK; PROBABILITY-MEASURES; GIBBS SAMPLER; MCMC METHODS; ALGORITHMS; INFERENCE; RATES; FLOW;
D O I
10.1090/mcom/3906
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This paper proposes a non-centered parameterization based for solving the hierarchical Bayesian inverse problems. This method can generate available estimates from the approximated posterior distribution efficiently. To avoid the mutually singular obstacle that occurred in the infinitedimensional hierarchical approach, we propose a rigorous theory of the noncentered variational Bayesian approach. Since the non-centered parameterization weakens the connection between the parameter and the hyper-parameter, we can introduce the hyper-parameter to all terms of the eigendecomposition of the prior covariance operator. We also show the relationships between the NCP-iMFVI and infinite-dimensional hierarchical approaches with centered parameterization. The proposed algorithm is applied to three inverse problems governed by the simple smooth equation, the Helmholtz equation, and the steady-state Darcy flow equation. Numerical results confirm our theoretical findings, illustrate the efficiency of solving the iMFVI problem formulated by large-scale linear and non-linear statistical inverse problems, and verify the mesh-independent property.
引用
收藏
页码:1715 / 1760
页数:46
相关论文
共 60 条
[1]   Importance Sampling: Intrinsic Dimension and Computational Cost [J].
Agapiou, S. ;
Papaspiliopoulos, O. ;
Sanz-Alonso, D. ;
Stuart, A. M. .
STATISTICAL SCIENCE, 2017, 32 (03) :405-431
[2]   Analysis of the Gibbs Sampler for Hierarchical Inverse Problems [J].
Agapiou, Sergios ;
Bardsley, Johnathan M. ;
Papaspiliopoulos, Omiros ;
Stuart, Andrew M. .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2014, 2 (01) :511-544
[3]   Posterior contraction rates for the Bayesian approach to linear ill-posed inverse problems [J].
Agapiou, Sergios ;
Larsson, Stig ;
Stuart, Andrew M. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (10) :3828-3860
[4]   Solving inverse problems using data-driven models [J].
Arridge, Simon ;
Maass, Peter ;
Oktem, Ozan ;
Schonlieb, Carola-Bibiane .
ACTA NUMERICA, 2019, 28 :1-174
[5]   Inverse scattering problems with multi-frequencies [J].
Bao, Gang ;
Li, Peijun ;
Lin, Junshan ;
Triki, Faouzi .
INVERSE PROBLEMS, 2015, 31 (09)
[6]   Numerical solution of an inverse medium scattering problem with a stochastic source [J].
Bao, Gang ;
Chow, Shui-Nee ;
Li, Peijun ;
Zhou, Haomin .
INVERSE PROBLEMS, 2010, 26 (07)
[7]   Geometric MCMC for infinite-dimensional inverse problems [J].
Beskos, Alexandros ;
Girolami, Mark ;
Lan, Shiwei ;
Farrell, Patrick E. ;
Stuart, Andrew M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 335 :327-351
[8]   Sequential Monte Carlo methods for Bayesian elliptic inverse problems [J].
Beskos, Alexandros ;
Jasra, Ajay ;
Muzaffer, Ege A. ;
Stuart, Andrew M. .
STATISTICS AND COMPUTING, 2015, 25 (04) :727-737
[9]  
Bishop Christopher M., 2006, Pattern recognition and machine learning, DOI [10.1007/978-0-387-45528-0, DOI 10.1007/978-0-387-45528-0]
[10]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877