TACT: Text attention based CNN-Transformer network for polyp segmentation

被引:1
作者
Zhao, Yiyang [1 ]
Li, Jinjiang [1 ,3 ]
Hua, Zhen [2 ]
机构
[1] Shandong Technol & Business Univ, Sch Comp Sci & Technol, Yantai, Peoples R China
[2] Shandong Technol & Business Univ, Sch Informat & Elect Engn, Yantai, Peoples R China
[3] Shandong Technol & Business Univ, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
CNN-Transformer; colonoscopy; medical image segmentation; polyp segmentation;
D O I
10.1002/ima.22997
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Colorectal cancer (CRC) has been one of the top three disease in the world in terms of incidence for many years. Therefore, how to prevent and treat CRC has become a topic of concern for an increasing number of people, and colonoscopy is the most effective detection method in polyp examination. According to studies, 90% of CRC is caused by adenomatous polyps of the large intestine. In clinical practice, the diversity of polyps' size, number, and shape and the unclear boundary between polyps and colon folds can reduce the operator's accuracy of polyps segmentation and lead to a higher rate of missed diagnosis. To better address the inaccurate segmentation or high miss rate due to the above factors, we propose a text attention-based CNN-Transformer network for polyp segmentation (TACT) network to process the images in a way that minimizes operator subjectivity and miss rate. The network is based on the CNN-Transformer structure, and on this basis, a fully attention progressive sampling module is added to more accurately divide the polyp boundary. Moreover, an auxiliary text classification task was added to focus on polyp size and number features in the form of text attention, which more effectively copes with the segmentation tasks of different sizes and different numbers of polyps. After comparing with multiple state-of-the-art segmentation methods in four challenging datasets, our proposed TACT improves segmentation accuracy for polyps of different sizes in different datasets.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Progressive CNN-transformer semantic compensation network for polyp segmentation
    Li, Daxiang
    Li, Denghui
    Liu, Ying
    Tang, Yao
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (16): : 2523 - 2536
  • [2] TFCNs: A CNN-Transformer Hybrid Network for Medical Image Segmentation
    Li, Zihan
    Li, Dihan
    Xu, Cangbai
    Wang, Weice
    Hong, Qingqi
    Li, Qingde
    Tian, Jie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 781 - 792
  • [3] Shallow Attention Network for Polyp Segmentation
    Wei, Jun
    Hu, Yiwen
    Zhang, Ruimao
    Li, Zhen
    Zhou, S. Kevin
    Cui, Shuguang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT I, 2021, 12901 : 699 - 708
  • [4] RT-Net: Region-Enhanced Attention Transformer Network for Polyp Segmentation
    Qin, Yilin
    Xia, Haiying
    Song, Shuxiang
    NEURAL PROCESSING LETTERS, 2023, 55 (09) : 11975 - 11991
  • [5] RT-Net: Region-Enhanced Attention Transformer Network for Polyp Segmentation
    Yilin Qin
    Haiying Xia
    Shuxiang Song
    Neural Processing Letters, 2023, 55 (9) : 11975 - 11991
  • [6] Three-stage polyp segmentation network based on reverse attention feature purification with Pyramid Vision transformer
    Meng, Lingbing
    Li, Yuting
    Duan, Weiwei
    Computers in Biology and Medicine, 2024, 179
  • [7] CIFTC-Net: Cross information fusion network with transformer and CNN for polyp segmentation☆
    Li, Xinyu
    Liu, Qiaohong
    Li, Xuewei
    Huang, Tiansheng
    Lin, Min
    Han, Xiaoxiang
    Zhang, Weikun
    Chen, Keyan
    Lin, Yuanjie
    DISPLAYS, 2024, 85
  • [8] DHAFormer: Dual-channel hybrid attention network with transformer for polyp segmentation
    Huang, Xuejie
    Wang, Liejun
    Jiang, Shaochen
    Xu, Lianghui
    PLOS ONE, 2024, 19 (07):
  • [9] Attention based multi-scale parallel network for polyp segmentation
    Song, Pengfei
    Li, Jinjiang
    Fan, Hui
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [10] Dual-branch feature extraction network combined with Transformer and CNN for polyp segmentation
    Liu, Qiaohong
    Lin, Yuanjie
    Han, Xiaoxiang
    Chen, Keyan
    Zhang, Weikun
    Yang, Hui
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (01)