Semiclassical Approximation of the Wigner Function for the Canonical Ensemble

被引:1
作者
de Oliveira, Marcos Gil [1 ]
de Almeida, Alfredo Miguel Ozorio [2 ]
机构
[1] Univ Fed Fluminense, Dept Fis, BR-24210346 Niteroi, RJ, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil
关键词
Weyl-Wigner representation; Canonical ensemble; semiclassical approximations; Kerr system; Morse potential; Nelson potential; INITIAL-VALUE REPRESENTATION; PARTITION-FUNCTION; MORSE OSCILLATOR; QUANTUM; PROPAGATION; OPERATOR;
D O I
10.1007/s10955-023-03164-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Weyl-Wigner representation of quantum mechanics allows one to map the density operator in a function in phase space-the Wigner function-which acts like a probability distribution. In the context of statistical mechanics, this mapping makes the transition from the classical to the quantum regimes very clear, because the thermal Wigner function tends to the Boltzmann distribution in the high temperature limit. We approximate this quantum phase space representation of the canonical density operator for general temperatures in terms of classical trajectories, which are obtained through a Wick rotation of the semiclassical approximation for the Weyl propagator. A numerical scheme which allows us to apply the approximation for a broad class of systems is also developed. The approximation is assessed by testing it against systems with one and two degrees of freedom, which shows that, for a considerable range of parameters, the thermodynamic averages are well reproduced.
引用
收藏
页数:28
相关论文
共 59 条
[1]  
Arnol'd VI., 2013, Dynamical Systems V: Bifurcation Theory and Catastrophe Theory
[2]  
Arnold V. I., 2013, Mathematical methods of classical mechanics
[3]   FRACTIONAL REVIVALS - UNIVERSALITY IN THE LONG-TERM EVOLUTION OF QUANTUM WAVE-PACKETS BEYOND THE CORRESPONDENCE PRINCIPLE DYNAMICS [J].
AVERBUKH, IS ;
PERELMAN, NF .
PHYSICS LETTERS A, 1989, 139 (09) :449-453
[4]   PERIODIC TRAJECTORIES FOR A TWO-DIMENSIONAL NONINTEGRABLE HAMILTONIAN [J].
BARANGER, M ;
DAVIES, KTR .
ANNALS OF PHYSICS, 1987, 177 (02) :330-358
[5]   AN ADAPTIVE ALGORITHM FOR THE APPROXIMATE CALCULATION OF MULTIPLE INTEGRALS [J].
BERNTSEN, J ;
ESPELID, TO ;
GENZ, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (04) :437-451
[6]   Direct measurement of the Wigner function of a one-photon Fock state in a cavity [J].
Bertet, P ;
Auffeves, A ;
Maioli, P ;
Osnaghi, S ;
Meunier, T ;
Brune, M ;
Raimond, JM ;
Haroche, S .
PHYSICAL REVIEW LETTERS, 2002, 89 (20) :200402-200402
[7]   Julia: A Fresh Approach to Numerical Computing [J].
Bezanson, Jeff ;
Edelman, Alan ;
Karpinski, Stefan ;
Shah, Viral B. .
SIAM REVIEW, 2017, 59 (01) :65-98
[8]  
Bogacki P., 1989, Appl. Math. Letters, V2, P321, DOI [10.1016/0893-9659(89)90079-7, DOI 10.1016/0893-9659(89)90079-7]
[9]   Complex WKB evolution of Markovian open systems [J].
Brodier, O. ;
de Almeida, A. M. Ozorio .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (50)
[10]   THE MORSE OSCILLATOR IN POSITION-SPACE, MOMENTUM SPACE, AND PHASE-SPACE [J].
DAHL, JP ;
SPRINGBORG, M .
JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (07) :4535-4547