Dimensions of certain sets of continued fractions with non-decreasing partial quotients

被引:2
作者
Fang, Lulu [1 ]
Ma, Jihua [2 ]
Song, Kunkun [3 ]
Wu, Min [4 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[3] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math,Coll Hunan Prov, Minist Educ,Key Lab Control & Optimizat Complex S, Changsha 410081, Peoples R China
[4] South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Continued fractions; Growth rate; Non-decreasing partial quotients; Hausdorff dimension;
D O I
10.1007/s11139-022-00629-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let [a(1)(x), a(2)(x), a(3)( x), . . .] be the continued fraction expansion of x is an element of (0, 1). This paper is concerned with certain sets of continued fractions with non-decreasing partial quotients. As a main result, we obtain the Hausdorff dimension of the set {x is an element of(0, 1) : a(1)(x) <= a(2)(x) <= . . ., lim sup n -> infinity log a(n)(x)/psi(n) = 1}} for any psi : N -> R+ satisfying psi(n) -> infinity as n -> infinity.
引用
收藏
页码:965 / 980
页数:16
相关论文
共 15 条
[1]  
Bernstein F, 1912, MATH ANN, V71, P417
[2]   A problem of probabilities relative to continued fractions [J].
Borel, E .
MATHEMATISCHE ANNALEN, 1912, 72 :578-584
[3]  
Borel M. E., 1909, Rendiconti del Circolo Matematico di Palermo (1884-1940), V27, P247, DOI DOI 10.1007/BF03019651
[4]  
Falconer K., 2004, FRACTAL GEOMETRY MAT
[5]   MULTIFRACTAL ANALYSIS OF THE CONVERGENCE EXPONENT IN CONTINUED FRACTIONS [J].
Fang, Lulu ;
Ma, Jihua ;
Song, Kunkun ;
Wu, Min .
ACTA MATHEMATICA SCIENTIA, 2021, 41 (06) :1896-1910
[6]   Some exceptional sets of Borel-Bernstein theorem in continued fractions [J].
Fang, Lulu ;
Ma, Jihua ;
Song, Kunkun .
RAMANUJAN JOURNAL, 2021, 56 (03) :891-909
[7]   Large and Moderate Deviation Principles for Engel Continued Fractions [J].
Fang, Lulu ;
Wu, Min ;
Shang, Lei .
JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (01) :294-318
[8]  
Good IJ, 1941, P CAMB PHILOS SOC, V37, P199
[9]  
Iosifescu M., 2002, METRICAL THEORY CONT, DOI [10.1007/978-94-015-9940-5, DOI 10.1007/978-94-015-9940-5]
[10]   INCREASING DIGIT SUBSYSTEMS OF INFINITE ITERATED FUNCTION SYSTEMS [J].
Jordan, Thomas ;
Rams, Michal .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (04) :1267-1279