MRI radiomics for predicting poor disease-free survival in muscle invasive bladder cancer: the results of the retrospective cohort study

被引:3
作者
Fan, Zhi-chang [1 ]
Zhang, Lu [1 ]
Yang, Guo-qiang [2 ]
Li, Shuo [1 ]
Guo, Jun-ting [1 ]
Bai, Jing-jing [1 ]
Wang, Bin [2 ]
Li, Yan [2 ]
Wang, Le [2 ]
Wang, Xiao-chun [2 ]
机构
[1] Shanxi Med Univ, Dept Med Imaging, Taiyuan 030001, Shanxi, Peoples R China
[2] Shanxi Med Univ, Hosp 1, Dept Radiol, 85 Jiefang South Rd, Taiyuan 030001, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
TP53; Tumor mutational burden; Muscle invasive bladder cancer; Prognosis; RADICAL CYSTECTOMY; RADIOTHERAPY; SUPPRESSOR; SUBTYPES; P53;
D O I
10.1007/s00261-023-04028-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To develop an MRI radiomic nomogram capable of identifying muscle invasive bladder cancer (MIBC) patients with high-risk molecular characteristics related to poor 2-year disease-free survival (DFS).Methods We performed a retrospective analysis of DNA sequencing data, prognostic information, and radiomics features from 91 MIBC patients at stages T2-T4aN0M0 without history of immunotherapy. To identify risk stratification, we employed Cox regression based on TP53 mutation status and tumor mutational burden (TMB) level. Radiomics signatures were selected using the least absolute shrinkage and selection operator (LASSO) to construct a nomogram based on logistic regression for predicting the stratification in the training cohort. The predictive performance of the nomogram was assessed in the testing cohort using receiver operator curve (ROC), Hosmer-Lemeshow (HL) test, clinical impact curve (CIC), and decision curve analysis (DCA).Results Among 91 participants, the mean TMB value was 3.3 mut/Mb, with 60 participants having TP53 mutations. Patients with TP53 mutations and a below-average TMB value were identified as high risk and had a significantly poor 2-year DFS (hazard ratio = 4.36, 95% CI 1.82-10.44, P < 0.001). LASSO identified five radiomics signatures that correlated with the risk stratification. In the testing cohort, the nomogram achieved an area under the ROC curve of 0.909 (95% CI 0.789-0.991) and an accuracy of 0.889 (95% CI 0.708-0.977).Conclusion The molecular risk stratification based on TP53 mutation status combined with TMB level is strongly associated with DFS in MIBC. Radiomics signatures can effectively predict this stratification and provide valuable information to clinical decision-making. [GRAPHICS] .
引用
收藏
页码:151 / 162
页数:12
相关论文
共 40 条
[1]  
[Anonymous], 2022, NCCN Guidelines Version 1
[2]   CT-Based Radiomics and Deep Learning for BRCA Mutation and Progression-Free Survival Prediction in Ovarian Cancer Using a Multicentric Dataset [J].
Avesani, Giacomo ;
Tran, Huong Elena ;
Cammarata, Giulio ;
Botta, Francesca ;
Raimondi, Sara ;
Russo, Luca ;
Persiani, Salvatore ;
Bonatti, Matteo ;
Tagliaferri, Tiziana ;
Dolciami, Miriam ;
Celli, Veronica ;
Boldrini, Luca ;
Lenkowicz, Jacopo ;
Pricolo, Paola ;
Tomao, Federica ;
Rizzo, Stefania Maria Rita ;
Colombo, Nicoletta ;
Manganaro, Lucia ;
Fagotti, Anna ;
Scambia, Giovanni ;
Gui, Benedetta ;
Manfredi, Riccardo .
CANCERS, 2022, 14 (11)
[3]   Conserved pan-cancer microenvironment subtypes predict response to immunotherapy [J].
Bagaev, Alexander ;
Kotlov, Nikita ;
Nomie, Krystle ;
Svekolkin, Viktor ;
Gafurov, Azamat ;
Isaeva, Olga ;
Osokin, Nikita ;
Kozlov, Ivan ;
Frenkel, Felix ;
Gancharova, Olga ;
Almog, Nava ;
Tsiper, Maria ;
Ataullakhanov, Ravshan ;
Fowler, Nathan .
CANCER CELL, 2021, 39 (06) :845-+
[4]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[5]  
Cheng Wei, 2022, BIOMED RES INT-UK, V2022
[6]   Identification of Distinct Basal and Luminal Subtypes of Muscle-Invasive Bladder Cancer with Different Sensitivities to Frontline Chemotherapy [J].
Choi, Woonyoung ;
Porten, Sima ;
Kim, Seungchan ;
Willis, Daniel ;
Plimack, Elizabeth R. ;
Hoffman-Censits, Jean ;
Roth, Beat ;
Cheng, Tiewei ;
Mai Tran ;
Lee, I-Ling ;
Melquist, Jonathan ;
Bondaruk, Jolanta ;
Majewski, Tadeusz ;
Zhang, Shizhen ;
Pretzsch, Shanna ;
Baggerly, Keith ;
Siefker-Radtke, Arlene ;
Czerniak, Bogdan ;
Dinney, Colin P. N. ;
McConkey, David J. .
CANCER CELL, 2014, 25 (02) :152-165
[7]   Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics [J].
Choi, Yoon Seong ;
Bae, Sohi ;
Chang, Jong Hee ;
Kang, Seok-Gu ;
Kim, Se Hoon ;
Kim, Jinna ;
Rim, Tyler Hyungtaek ;
Choi, Seung Hong ;
Jain, Rajan ;
Lee, Seung-Koo .
NEURO-ONCOLOGY, 2021, 23 (02) :304-313
[8]  
Dankers FJWM, 2019, FUNDAMENTALS OF CLINICAL DATA SCIENCE, P101, DOI 10.1007/978-3-319-99713-1_8
[9]   THE P53 PROTO-ONCOGENE CAN ACT AS A SUPPRESSOR OF TRANSFORMATION [J].
FINLAY, CA ;
HINDS, PW ;
LEVINE, AJ .
CELL, 1989, 57 (07) :1083-1093
[10]   Loss of expression of the tumour suppressor gene AIMP3 predicts survival following radiotherapy in muscle-invasive bladder cancer [J].
Gurung, Pratik M. S. ;
Veerakumarasivam, Abhi ;
Williamson, Magali ;
Counsell, Nicholas ;
Douglas, James ;
Tan, Wei S. ;
Feber, Andrew ;
Crabb, Simon J. ;
Short, Susan C. ;
Freeman, Alex ;
Powles, Thomas ;
Hoskin, Peter J. ;
West, Catharine M. ;
Kelly, John D. .
INTERNATIONAL JOURNAL OF CANCER, 2015, 136 (03) :709-720