A new framework for metabolic connectivity mapping using bolus [18F]FDG PET and kinetic modeling

被引:8
作者
Volpi, Tommaso [1 ,2 ]
Vallini, Giulia [3 ]
Silvestri, Erica [3 ]
De Francisci, Mattia [3 ]
Durbin, Tony [4 ]
Corbetta, Maurizio [2 ,5 ]
Lee, John J. [4 ]
Vlassenko, Andrei G. [4 ]
Goyal, Manu S. [4 ]
Bertoldo, Alessandra [2 ,3 ,6 ]
机构
[1] Yale Univ, Dept Radiol & Biomed Imaging, New Haven, CT USA
[2] Univ Padua, Padova Neurosci Ctr, Padua, Italy
[3] Univ Padua, Dept Informat Engn, Padua, Italy
[4] Washington Univ, Neuroimaging Labs, Mallinckrodt Inst Radiol, Sch Med, St Louis, MO USA
[5] Univ Padua, Dept Neurosci, Padua, Italy
[6] Via Gradenigo 6-B, I-35122 Padua, Italy
关键词
F-18]FDG; dynamic PET; Euclidean similarity; individual-level metabolic connectivity; kinetic modeling; POSITRON-EMISSION-TOMOGRAPHY; HUMAN BRAIN; INPUT FUNCTION; GLUCOSE; CONNECTOME; FMRI; MATTER; IMAGES; ATLAS;
D O I
10.1177/0271678X231184365
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Metabolic connectivity (MC) has been previously proposed as the covariation of static [F-18]FDG PET images across participants, i.e., across-individual MC (ai-MC). In few cases, MC has been inferred from dynamic [F-18]FDG signals, i.e., within-individual MC (wi-MC), as for resting-state fMRI functional connectivity (FC). The validity and interpretability of both approaches is an important open issue. Here we reassess this topic, aiming to 1) develop a novel wi-MC methodology; 2) compare ai-MC maps from standardized uptake value ratio (SUVR) vs. [F-18]FDG kinetic parameters fully describing the tracer behavior (i.e., K-i, K-1, k(3)); 3) assess MC interpretability in comparison to structural connectivity and FC. We developed a new approach based on Euclidean distance to calculate wi-MC from PET time-activity curves. The across-individual correlation of SUVR, K-i, K-1, k(3) produced different networks depending on the chosen [F-18]FDG parameter (k(3) MC vs. SUVR MC, r = 0.44). We found that wi-MC and ai-MC matrices are dissimilar (maximum r = 0.37), and that the match with FC is higher for wi-MC (Dice similarity: 0.47-0.63) than for ai-MC (0.24-0.39). Our analyses demonstrate that calculating individual-level MC from dynamic PET is feasible and yields interpretable matrices that bear similarity to fMRI FC measures.
引用
收藏
页码:1905 / 1918
页数:14
相关论文
共 50 条
[31]   Evaluation of the early-phase [18F]AV45 PET as an optimal surrogate of [18F]FDG PET in ageing and Alzheimer's clinical syndrome [J].
Vanhoutte, Matthieu ;
Landeau, Brigitte ;
Sherif, Siya ;
de la Sayette, Vincent ;
Dautricourt, Sophie ;
Abbas, Ahmed ;
Manrique, Alain ;
Chocat, Anne ;
Chetelat, Gael .
NEUROIMAGE-CLINICAL, 2021, 31
[32]   Kinetic Modeling of Dynamic PET-18F-FDG Atherosclerosis Without Blood Sampling [J].
Al-Enezi, Mamdouh S. ;
Bentourkia, M'Hamed .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2020, 4 (06) :729-734
[33]   EMATA: a toolbox for the automatic extraction and modeling of arterial inputs for tracer kinetic analysis in [18F]FDG brain studies [J].
De Francisci, Mattia ;
Silvestri, Erica ;
Bettinelli, Andrea ;
Volpi, Tommaso ;
Goyal, Manu S. ;
Vlassenko, Andrei G. ;
Cecchin, Diego ;
Bertoldo, Alessandra .
EJNMMI PHYSICS, 2024, 11 (01)
[34]   Shortening the Duration of [18F]FDG PET Brain Examination for Diagnosis of Brain Glioma [J].
Monden, Toshihide ;
Kudomi, Nobuyuki ;
Sasakawa, Yasuhiro ;
Yamamoto, Yuka ;
Kawai, Nobuyuki ;
Nishiyama, Yoshihiro .
MOLECULAR IMAGING AND BIOLOGY, 2011, 13 (04) :754-758
[35]   [18F]FDG PET Neuroimaging Predicts Pentylenetetrazole (PTZ) Kindling Outcome in Rats [J].
Bascunana, Pablo ;
Javela, Julian ;
Delgado, Mercedes ;
Fernandez de la Rosa, Ruben ;
Anis Shiha, Ahmed ;
Garcia-Garcia, Luis ;
Angel Pozo, Miguel .
MOLECULAR IMAGING AND BIOLOGY, 2016, 18 (05) :733-740
[36]   How Long of a Dynamic 3-Deoxy-3-[18F]fluorothymidine ([18F]FLT) PET Acquisition Is Needed for Robust Kinetic Analysis in Breast Cancer? [J].
Zhang, Jun ;
Liu, Xiaoli ;
Knopp, Michelle I. ;
Ramaswamy, Bhuvaneswari ;
Knopp, Michael V. .
MOLECULAR IMAGING AND BIOLOGY, 2019, 21 (02) :382-390
[37]   Improved Derivation of Input Function in Dynamic Mouse [18F]FDG PET Using Bladder Radioactivity Kinetics [J].
Wong, Koon-Pong ;
Zhang, Xiaoli ;
Huang, Sung-Cheng .
MOLECULAR IMAGING AND BIOLOGY, 2013, 15 (04) :486-496
[38]   Clinical application of [18F]FDG PET/CT in follicular lymphoma [J].
Diaz-Silvan, A. ;
Oton-Sanchez, L. F. ;
Caresia-Aroztegui, A. P. ;
Cozar-Santiago, M. del Puig ;
Orcajo-Rincon, J. ;
De Arcocha-Torres, M. ;
Delgado-Bolton, R. C. ;
Cabello-Garcia, D. ;
SociedadEspa, Sociedad Espanola de Medicina Nuclear e Imagen Molecular .
REVISTA ESPANOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR, 2022, 41 (03) :202-212
[39]   Accuracy of [18F] FDG PET/MRI for the Detection of Liver Metastases [J].
Beiderwellen, Karsten ;
Geraldo, Llanos ;
Ruhlmann, Verena ;
Heusch, Philipp ;
Gomez, Benedikt ;
Nensa, Felix ;
Umutlu, Lale ;
Lauenstein, Thomas C. .
PLOS ONE, 2015, 10 (09)
[40]   Cutaneous incidentaloma revealed by [18F]-FDG-PET/CT [J].
Maya, Y. ;
Fujita, Y. ;
Mizukami, T. ;
Takei, T. ;
Shimizu, S. .
JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2021, 35 (04) :E261-E263