A new framework for metabolic connectivity mapping using bolus [18F]FDG PET and kinetic modeling

被引:4
|
作者
Volpi, Tommaso [1 ,2 ]
Vallini, Giulia [3 ]
Silvestri, Erica [3 ]
De Francisci, Mattia [3 ]
Durbin, Tony [4 ]
Corbetta, Maurizio [2 ,5 ]
Lee, John J. [4 ]
Vlassenko, Andrei G. [4 ]
Goyal, Manu S. [4 ]
Bertoldo, Alessandra [2 ,3 ,6 ]
机构
[1] Yale Univ, Dept Radiol & Biomed Imaging, New Haven, CT USA
[2] Univ Padua, Padova Neurosci Ctr, Padua, Italy
[3] Univ Padua, Dept Informat Engn, Padua, Italy
[4] Washington Univ, Neuroimaging Labs, Mallinckrodt Inst Radiol, Sch Med, St Louis, MO USA
[5] Univ Padua, Dept Neurosci, Padua, Italy
[6] Via Gradenigo 6-B, I-35122 Padua, Italy
关键词
F-18]FDG; dynamic PET; Euclidean similarity; individual-level metabolic connectivity; kinetic modeling; POSITRON-EMISSION-TOMOGRAPHY; HUMAN BRAIN; INPUT FUNCTION; GLUCOSE; CONNECTOME; FMRI; MATTER; IMAGES; ATLAS;
D O I
10.1177/0271678X231184365
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Metabolic connectivity (MC) has been previously proposed as the covariation of static [F-18]FDG PET images across participants, i.e., across-individual MC (ai-MC). In few cases, MC has been inferred from dynamic [F-18]FDG signals, i.e., within-individual MC (wi-MC), as for resting-state fMRI functional connectivity (FC). The validity and interpretability of both approaches is an important open issue. Here we reassess this topic, aiming to 1) develop a novel wi-MC methodology; 2) compare ai-MC maps from standardized uptake value ratio (SUVR) vs. [F-18]FDG kinetic parameters fully describing the tracer behavior (i.e., K-i, K-1, k(3)); 3) assess MC interpretability in comparison to structural connectivity and FC. We developed a new approach based on Euclidean distance to calculate wi-MC from PET time-activity curves. The across-individual correlation of SUVR, K-i, K-1, k(3) produced different networks depending on the chosen [F-18]FDG parameter (k(3) MC vs. SUVR MC, r = 0.44). We found that wi-MC and ai-MC matrices are dissimilar (maximum r = 0.37), and that the match with FC is higher for wi-MC (Dice similarity: 0.47-0.63) than for ai-MC (0.24-0.39). Our analyses demonstrate that calculating individual-level MC from dynamic PET is feasible and yields interpretable matrices that bear similarity to fMRI FC measures.
引用
收藏
页码:1905 / 1918
页数:14
相关论文
共 50 条
  • [1] Tumor Metabolic Phenotypes on 18F FDG PET
    Wong, Ching-yee Oliver
    Khong, Pek-lan
    JOURNAL OF NUCLEAR MEDICINE, 2009, 50 (06) : 1010 - 1011
  • [2] Kinetic modeling of [18F]FDG in skeletal muscle by PET:: a four-compartment five-rate-constant model
    Bertoldo, A
    Peltoniemi, P
    Oikonen, V
    Knuuti, J
    Nuutila, P
    Cobelli, C
    AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2001, 281 (03): : E524 - E536
  • [3] Functional brain mapping of actual car-driving using [18F]FDG-PET
    Jeong, Myeonggi
    Tashiro, Manabu
    Singh, Laxsmi N.
    Yamaguchi, Keiichiro
    Horikawa, Etsuo
    Miyake, Masayasu
    Watanuki, Shouichi
    Iwata, Ren
    Fukuda, Hiroshi
    Takahashi, Yasuo
    Itoh, Masatoshi
    ANNALS OF NUCLEAR MEDICINE, 2006, 20 (09) : 623 - 628
  • [4] Functional brain mapping of actual car-driving using [18F]FDG-PET
    Myeonggi Jeong
    Manabu Tashiro
    Laxsmi N. Singh
    Keiichiro Yamaguchi
    Etsuo Horikawa
    Masayasu Miyake
    Shouichi Watanuki
    Ren Iwata
    Hiroshi Fukuda
    Yasuo Takahashi
    Masatoshi Itoh
    Annals of Nuclear Medicine, 2006, 20 : 623 - 628
  • [5] [18F]FLT-PET and [18F]FDG-PET in the evaluation of radiotherapy for laryngeal cancer
    Been, Lukas B.
    Hoekstra, Harald J.
    Suurmeijer, Albert J. H.
    Jager, Pieter L.
    van der Laan, Bernard F. A. M.
    Elsinga, Philip H.
    ORAL ONCOLOGY, 2009, 45 (12) : E211 - E215
  • [6] In Vivo Quantification of Hypoxic and Metabolic Status of NSCLC Tumors Using [18F]HX4 and [18F]FDG-PET/CT Imaging
    Zegers, Catharina M. L.
    van Elmpt, Wouter
    Reymen, Bart
    Even, Aniek J. G.
    Troost, Esther G. C.
    Ollers, Michel C.
    Hoebers, Frank J. P.
    Houben, Ruud M. A.
    Eriksson, Jonas
    Windhorst, Albert D.
    Mottaghy, Felix M.
    De Ruysscher, Dirk
    Lambin, Philippe
    CLINICAL CANCER RESEARCH, 2014, 20 (24) : 6389 - 6397
  • [7] [18F]FDG PET/CT in rheumatoid arthritis
    Graham, Richard N.
    Panagiotidis, Emmanouil
    QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 66 (03) : 234 - 244
  • [8] EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2
    Varrone, Andrea
    Asenbaum, Susanne
    Vander Borght, Thierry
    Booij, Jan
    Nobili, Flavio
    Nagren, Kjell
    Darcourt, Jacques
    Kapucu, Oezlem L.
    Tatsch, Klaus
    Bartenstein, Peter
    Van Laere, Koen
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2009, 36 (12) : 2103 - 2110
  • [9] EANM procedure guidelines for brain PET imaging using [18F]FDG, version 3
    Guedj, Eric
    Varrone, Andrea
    Boellaard, Ronald
    Albert, Nathalie L.
    Barthel, Henryk
    van Berckel, Bart
    Brendel, Matthias
    Cecchin, Diego
    Ekmekcioglu, Ozgul
    Garibotto, Valentina
    Lammertsma, Adriaan A.
    Law, Ian
    Penuelas, Ivan
    Semah, Franck
    Traub-Weidinger, Tatjana
    van de Giessen, Elsmarieke
    Van Weehaeghe, Donatienne
    Morbelli, Silvia
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (02) : 632 - 651
  • [10] Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET
    Rik Ossenkoppele
    Nelleke Tolboom
    Jessica C. Foster-Dingley
    Sofie F. Adriaanse
    Ronald Boellaard
    Maqsood Yaqub
    Albert D. Windhorst
    Frederik Barkhof
    Adriaan A. Lammertsma
    Philip Scheltens
    Wiesje M. van der Flier
    Bart N. M. van Berckel
    European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39 : 990 - 1000