Albizzia pollen-inspired phase change capsules accelerate energy storage of packed-bed thermal energy storage system

被引:13
|
作者
Yao, Haichen [1 ]
Liu, Xianglei [1 ,2 ,3 ]
Tian, Yang [1 ]
Xu, Qiao [1 ]
Luo, Qingyang [1 ]
Ren, Tianze [1 ]
Wang, Jianguo [1 ]
Lv, Shushan [1 ]
Dang, Chunzhuo [1 ]
Xuan, Yimin [1 ,2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Energy & Power Engn, Nanjing 210016, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Thermal Management & Energy Utilizat Aviat, Nanjing 210016, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Integrated Energy Inst, Nanjing 210016, Jiangsu, Peoples R China
基金
国家重点研发计划;
关键词
Latent heat; Thermal energy storage; Packed-bed; Biomimetics; Albizzia pollen; PERFORMANCE ANALYSIS; HEAT-TRANSFER; PCM CAPSULE; UNIT; SIMULATION; GENERATION; STRATEGY; DESIGN; WATER;
D O I
10.1016/j.applthermaleng.2023.120777
中图分类号
O414.1 [热力学];
学科分类号
摘要
Packed-bed thermal energy storage (PBTES) system using phase change capsules has been widely applied for thermal energy harvesting and management to alleviate unbalanced energy supply and demand problems. However, the slow thermal energy charging is always a daunting challenge limiting its fast development. Here, a bionic phase change materials (PCMs) capsule by mimicking the natural structure of albizzia pollen is proposed. The heat storage performance and economy of capsules with different internal fin structures are investigated numerically and experimentally. The thermal charging of pollen-type PCMs capsules is the fastest, whose melting time prominently reduces by 19 %, 24 %, 41 % and 61 % compared to the plate-type, ring-type, column-type, and pure PCMs capsules, respectively. That is because the contact area between the skeleton and the capsule wall is increased and the average distance between PCMs and the heat transfer surface is shortened. The pollen-type capsules exhibit the best economy with the exergy efficiency is improved by 15 % compared to pure PCMs capsule. By optimizing the ratio of fin length to radius (L/R) to 5/6, the melting time can be further reduced by 62 % and the exergy efficiency can be improved by 16 % owing to the enhanced heat transfer rate in the center of the pollen-type capsules. A PBTES system is further built based on optimized pollen-based capsules, and faster heat storage rate is successfully demonstrated in experiments. These results provide alternative solutions for optimizing PBTES systems and improving their thermal energy storage performances.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Experimental study on the performance of packed-bed latent thermal energy storage system employing spherical capsules with hollow channels
    Tang, Yong
    Wang, Zhichao
    Zhou, Jinzhi
    Zeng, Chao
    Lyu, Weihua
    Lu, Lin
    Yuan, Yanping
    ENERGY, 2024, 293
  • [22] A review on numerical simulation, optimization design and applications of packed-bed latent thermal energy storage system with spherical capsules
    He, Xibo
    Qiu, Jun
    Wang, Wei
    Hou, Yicheng
    Ayyub, Mubashar
    Shuai, Yong
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [23] Experimental and Numerical Investigation of a Packed-bed Thermal Energy Storage Device
    Yang, Bei
    Wang, Yan
    Bai, Fengwu
    Wang, Zhifeng
    INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2016), 2017, 1850
  • [24] TRANSIENT-RESPONSE OF A PACKED-BED FOR THERMAL-ENERGY STORAGE
    BEASLEY, DE
    CLARK, JA
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1984, 27 (09) : 1659 - 1669
  • [25] Experimental and computational analysis of packed-bed thermal energy storage tank designed for adiabatic compressed air energy storage system
    Ochmann, Jakub
    Rusin, Krzysztof
    Rulik, Sebastian
    Waniczek, Sebastian
    Bartela, Lukasz
    APPLIED THERMAL ENGINEERING, 2022, 213
  • [26] Phase change material thermal energy storage design of packed bed units
    Liang, Haobin
    Niu, Jianlei
    Annabattula, Ratna Kumar
    Reddy, K. S.
    Abbas, Ali
    Luu, Minh Tri
    Gan, Yixiang
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [27] Experimental and computational analysis of packed-bed thermal energy storage tank designed for adiabatic compressed air energy storage system
    Ochmann, Jakub
    Rusin, Krzysztof
    Rulik, Sebastian
    Waniczek, Sebastian
    Bartela, Lukasz
    Applied Thermal Engineering, 2022, 213
  • [28] Evaluation of PCM thermophysical properties on a compressed air energy storage system integrated with packed-bed latent thermal energy storage
    Yu, Xiaoli
    Zhang, Zhiping
    Qian, Gao
    Jiang, Ruicheng
    Wang, Lei
    Huang, Rui
    Li, Zhi
    JOURNAL OF ENERGY STORAGE, 2024, 81
  • [29] Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules
    Wu, Ming
    Xu, Chao
    He, Yaling
    APPLIED THERMAL ENGINEERING, 2016, 93 : 1061 - 1073
  • [30] Optimization of the packed-bed thermal energy storage with cascaded PCM capsules under the constraint of outlet threshold temperature
    Li, Meng-Jie
    Li, Ming-Jia
    Tong, Zi-Xiang
    Li, Dong
    APPLIED THERMAL ENGINEERING, 2021, 186