Feature Enhancement and Reconstruction for Small Object Detection

被引:0
作者
Zhang, Chong-Jian [1 ,2 ]
Chen, Song-Lu [1 ,2 ]
Liu, Qi [1 ,2 ]
Huang, Zhi-Yong [1 ,2 ]
Chen, Feng [2 ,3 ]
Yin, Xu-Cheng [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Beijing 100083, Peoples R China
[2] USTB EEasyTech Joint Lab Artificial Intelligence, Beijing 100083, Peoples R China
[3] EEasy Technol Co Ltd, Zhuhai 519000, Peoples R China
来源
MULTIMEDIA MODELING, MMM 2023, PT I | 2023年 / 13833卷
基金
中国国家自然科学基金;
关键词
Small object detection; Content-aware upsampling; Content-shuffle attention;
D O I
10.1007/978-3-031-27077-2_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the small size and noise interference, small object detection is still a challenging task. The previous work can not effectively reduce noise interference and extract representative features of the small object. Although the upsampling network can alleviate the loss of features by enlarging feature maps, it can not enhance semantics and will introduce more noises. To solve the above problems, we propose CAU (Content-Aware Upsampling) to enhance feature representation and semantics of the small object. Moreover, we propose CSA (Content-Shuffle Attention) to reconstruct robust features and reduce noise interference using feature shuffling and attention. Extensive experiments verify that our proposed method can improve small object detection by 2.2% on the traffic sign dataset TT-100K and 0.8% on the object detection dataset MS COCO compared with the baseline model.
引用
收藏
页码:16 / 27
页数:12
相关论文
共 50 条
[31]   Adaptive weighted multiscale feature fusion for small drone object detection [J].
Yuan, Yuman ;
Guo, Hongwei ;
Bai, Hongyang ;
Qin, Weiwei .
JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (03)
[32]   Small object detection model based on feature fusion of attention mechanism [J].
Chen H. ;
Zhen X. ;
Zhao T. .
Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (03) :60-66
[33]   Backbone Feature Hierarchy Selection Strategy and Verification in Small Object Detection [J].
Zhang, Bin ;
Luo, Meizhen ;
Yan, Shankai ;
Hu, Juan ;
Peng, Ling ;
Wu, Liangshun ;
Wang, Yujuan .
2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024, 2024, :304-310
[34]   STDnet: Exploiting high resolution feature maps for small object detection [J].
Bosquet, Brais ;
Mucientes, Manuel ;
Brea, Victor M. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 91
[35]   UEFPN: Unified and Enhanced Feature Pyramid Networks for Small Object Detection [J].
Qiao, Ziteng ;
Shi, Dianxi ;
Yi, Xiaodong ;
Shi, Yanyan ;
Zhang, Yuhui ;
Liu, Yangyang .
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (02)
[36]   A small object detection algorithm based on feature interaction and guided learning [J].
Shao, Xiang-Ying ;
Guo, Ying ;
Wang, You-Wei ;
Bao, Zheng-Wei ;
Wang, Ji-Yu .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 98
[37]   A small underwater object detection model with enhanced feature extraction and fusion [J].
Li, Tao ;
Gang, Yijin ;
Li, Sumin ;
Shang, Yizi .
SCIENTIFIC REPORTS, 2025, 15 (01)
[38]   MFEAD-SODNet: multi-dimensional feature enhancement and multi-scale feature adaptive aggregation and diffusion network for small object detection [J].
Yi, Pan ;
Cao, Kun ;
Wei, Chunhua ;
Liang, Lei ;
Gao, Zhisheng .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (08)
[39]   Lightweight small target detection method based on weak feature enhancement [J].
Zhοu W.-N. ;
Wu Z.-H. ;
Zhang Z.-D. ;
Peng L. ;
Xie L.-B. .
Kongzhi yu Juece/Control and Decision, 2024, 39 (02) :381-390
[40]   Dynamic feature and context enhancement network for faster detection of small objects [J].
Ding, Shijiao ;
Xiong, Maomao ;
Wang, Xinghua ;
Zhang, Zekai ;
Chen, Qinghui ;
Zhang, Jinglin ;
Wang, Xing ;
Zhang, Zaigui ;
Li, Dagang ;
Xu, Sen ;
Ding, Weiping .
EXPERT SYSTEMS WITH APPLICATIONS, 2025, 265