Feature Enhancement and Reconstruction for Small Object Detection

被引:0
作者
Zhang, Chong-Jian [1 ,2 ]
Chen, Song-Lu [1 ,2 ]
Liu, Qi [1 ,2 ]
Huang, Zhi-Yong [1 ,2 ]
Chen, Feng [2 ,3 ]
Yin, Xu-Cheng [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Beijing 100083, Peoples R China
[2] USTB EEasyTech Joint Lab Artificial Intelligence, Beijing 100083, Peoples R China
[3] EEasy Technol Co Ltd, Zhuhai 519000, Peoples R China
来源
MULTIMEDIA MODELING, MMM 2023, PT I | 2023年 / 13833卷
基金
中国国家自然科学基金;
关键词
Small object detection; Content-aware upsampling; Content-shuffle attention;
D O I
10.1007/978-3-031-27077-2_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the small size and noise interference, small object detection is still a challenging task. The previous work can not effectively reduce noise interference and extract representative features of the small object. Although the upsampling network can alleviate the loss of features by enlarging feature maps, it can not enhance semantics and will introduce more noises. To solve the above problems, we propose CAU (Content-Aware Upsampling) to enhance feature representation and semantics of the small object. Moreover, we propose CSA (Content-Shuffle Attention) to reconstruct robust features and reduce noise interference using feature shuffling and attention. Extensive experiments verify that our proposed method can improve small object detection by 2.2% on the traffic sign dataset TT-100K and 0.8% on the object detection dataset MS COCO compared with the baseline model.
引用
收藏
页码:16 / 27
页数:12
相关论文
共 50 条
[21]   Small object detection using deep feature learning and feature fusion network [J].
Tong, Kang ;
Wu, Yiquan .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 132
[22]   Multi-scale non-local feature enhancement network for robust small-object detection [J].
Choi J.H. ;
Lee S. ;
Kim D.H. ;
Song B.C. .
IEIE Transactions on Smart Processing and Computing, 2020, 9 (04) :274-283
[23]   FE-YOLOv5: Feature enhancement network based on YOLOv5 for small object detection [J].
Wang, Min ;
Yang, Wenzhong ;
Wang, Liejun ;
Chen, Danny ;
Wei, Fuyuan ;
KeZiErBieKe, HaiLaTi ;
Liao, Yuanyuan .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 90
[24]   CSSDet: small object detection via cross-scale feature enhancement on drone-view images [J].
Cheng, Gui ;
Ding, Qing ;
Cai, Bowen ;
Dang, Chaoya ;
Wang, Yu ;
Zuo, Xiaolong ;
Shao, Zhenfeng .
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
[25]   Hierarchical Focused Feature Pyramid Network for Small Object Detection [J].
Wang, Siwei ;
Chen, Zhiwei ;
Ding, Haoyang ;
Cao, Liujuan .
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XII, 2024, 14436 :432-444
[26]   SSRDet: Small Object Detection Based on Feature Pyramid Network [J].
Zhang, Lijuan ;
Wang, Minhui ;
Jiang, Yutong ;
Li, Dongming ;
Zhou, Yue .
IEEE ACCESS, 2023, 11 :96743-96752
[27]   EFFECTIVE FEATURE FUSION NETWORK IN BIFPN FOR SMALL OBJECT DETECTION [J].
Chen, Jun ;
Mai, HongSheng ;
Luo, Linbo ;
Chen, Xiaoqiang ;
Wu, Kangle .
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, :699-703
[28]   Enhanced semantic feature pyramid network for small object detection [J].
Chen, Yuqi ;
Zhu, Xiangbin ;
Li, Yonggang ;
Wei, Yuanwang ;
Ye, Lihua .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 113
[29]   Object feedback and feature information retention for small object detection in intelligent transportation scenes [J].
Tian, Di ;
Han, Yi ;
Wang, Shu .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
[30]   Small object detection model based on feature fusion of attention mechanism [J].
Chen H. ;
Zhen X. ;
Zhao T. .
Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (03) :60-66