Magnetic guidewire steering at ultrahigh magnetic fields

被引:38
作者
Tiryaki, Mehmet Efe [1 ,2 ]
Elmacioglu, Yigit Gunsur [1 ]
Sitti, Metin [1 ,2 ,3 ,4 ]
机构
[1] Max Planck Inst Intelligent Syst, Phys Intelligence Dept, D-70569 Stuttgart, Germany
[2] ETH, Inst Biomed Engn, CH-8092 Zurich, Switzerland
[3] Koc Univ, Sch Med, TR-34450 Istanbul, Turkiye
[4] Koc Univ, Coll Engn, TR-34450 Istanbul, Turkiye
关键词
CATHETER; SOFT; MANIPULATION; NAVIGATION; ACTUATION; TRACKING;
D O I
10.1126/sciadv.adg6438
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With remote magnetic steering capabilities, magnetically actuated guidewires have proven their potential in minimally invasive medical procedures. Existing magnetic steering strategies, however, have been limited to low magnetic fields, which prevents the integration into medical systems operating at ultrahigh fields (UHF), such as magnetic resonance imaging (MRI) scanners. Here, we present magnetic guidewire design and steering strategies by elucidating the magnetic actuation principles of permanent magnets at UHF. By modeling the uniaxial magnetization behavior of permanent magnets, we outline the magnetic torque and force and demonstrate unique magnetic actuation opportunities at UHF, such as in situ remagnetization. Last, we illustrate the proposed steering principles using a magnetic guidewire composed of neodymium magnets and a fiber optic rod in a 7-Tesla preclinical MRI scanner. The developed UHF magnetic actuation framework would enable nextgeneration magnetic robots to operate inside MRI scanners.
引用
收藏
页数:16
相关论文
共 50 条
[21]   Magnetic compass of garden warblers is not affected by oscillating magnetic fields applied to their eyes [J].
Bojarinova, Julia ;
Kavokin, Kirill ;
Pakhomov, Alexander ;
Cherbunin, Roman ;
Anashina, Anna ;
Erokhina, Maria ;
Ershova, Maria ;
Chernetsov, Nikita .
SCIENTIFIC REPORTS, 2020, 10 (01)
[22]   A magnetic minirobot with anchoring and drilling ability in tubular environments actuated by external magnetic fields [J].
Choi, K. ;
Jeon, S. M. ;
Nam, J. K. ;
Jang, G. H. .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (17)
[23]   Bipedal microwalkers actuated by oscillating magnetic fields [J].
He, Yuanzhe ;
Dong, Shengwei ;
Wang, Lefeng ;
Rong, Weibin ;
Sun, Lining .
SOFT MATTER, 2020, 16 (34) :7927-7934
[24]   On demand manipulation of ferrofluid droplets by magnetic fields [J].
Ray, A. ;
Varma, V. B. ;
Jayaneel, P. J. ;
Sudharsan, N. M. ;
Wang, Z. P. ;
Ramanujan, R. V. .
SENSORS AND ACTUATORS B-CHEMICAL, 2017, 242 :760-768
[25]   Bats Respond to Very Weak Magnetic Fields [J].
Tian, Lan-Xiang ;
Pan, Yong-Xin ;
Metzner, Walter ;
Zhang, Jin-Shuo ;
Zhang, Bing-Fang .
PLOS ONE, 2015, 10 (04)
[26]   Track fitting in slightly inhomogeneous magnetic fields [J].
Alcaraz, J .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 553 (03) :613-619
[27]   LINEAR INDUCTION ACCELERATOR WITH MAGNETIC STEERING FOR INERTIAL FUSION TARGET INJECTION [J].
Petzoldt, Ronald ;
Alexander, Neil ;
Carlson, Lane ;
Cotner, Eric ;
Goodin, Dan ;
Kratz, Robert .
FUSION SCIENCE AND TECHNOLOGY, 2015, 68 (02) :308-313
[28]   Magnetic microkayaks: propulsion of microrods precessing near a surface by kilohertz frequency, rotating magnetic fields [J].
Mair, L. O. ;
Evans, B. A. ;
Nacev, A. ;
Stepanov, P. Y. ;
Hilaman, R. ;
Chowdhury, S. ;
Jafari, S. ;
Wang, W. ;
Shapiro, B. ;
Weinberg, I. N. .
NANOSCALE, 2017, 9 (10) :3375-3381
[29]   Effects of static magnetic fields on natural or magnetized mesenchymal stromal cells: Repercussions for magnetic targeting [J].
Silva, Luisa H. A. ;
Silva, Sueli M. ;
Lima, Emilia C. D. ;
Silva, Renata C. ;
Weiss, Daniel J. ;
Morales, Marcelo M. ;
Cruz, Fernanda F. ;
Rocco, Patricia R. M. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2018, 14 (07) :2075-2085
[30]   Magnetic response of zigzag nanoribbons under electric fields [J].
Culchac, F. J. ;
Capaz, Rodrigo B. ;
Costa, A. T. ;
Latge, A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (21)