A guide and tools for selecting and accessing microclimate data for mechanistic niche modeling

被引:12
作者
Meyer, Abigail V. [1 ]
Sakairi, Yutaro [1 ]
Kearney, Michael R. [2 ]
Buckley, Lauren B. [1 ]
机构
[1] Univ Washington, Dept Biol, Seattle, WA 98195 USA
[2] Univ Melbourne, Sch BioSci, Melbourne, Vic, Australia
基金
美国国家科学基金会;
关键词
biophysical; climate change; data comparison; energy budget; forecast; hindcast; microclimate; radiation; temperature; ENVIRONMENTAL VARIABILITY; ECOLOGICAL NICHE; CLIMATE-CHANGE; DATA SET; TEMPERATURE; RELEVANT; LANDSCAPES; CHALLENGES; RESPONSES; BEHAVIOR;
D O I
10.1002/ecs2.4506
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Most ecological analyses and forecasts use weather station data or coarse interpolated, gridded air temperature data. Yet, these products often poorly capture the microclimates experienced by organisms that respond to fine-scale spatial and temporal environmental variation near the surface. Sources of historic and projected future data with finer spatial and temporal resolution are proliferating. We qualitatively and quantitatively review and evaluate the available data on three core issues central to microclimate modeling: the quality of the input environmental data, the ability of algorithms to capture microclimatic processes given environmental forcing data, and how best to access microclimatic data. We show how differences between observed environmental conditions and those estimated using environmental forcing data, microclimate algorithms, and precomputed microclimate datasets can be substantial depending on the variable, location, and season. The choice of environmental dataset to parameterize biophysical models has ramifications for biological estimates, such as the duration of potential activity and incidence of thermal stress. New data sources offering high temporal and spatial resolution correspond well to observational data and have the potential to revolutionize understanding of the ecological implications of microclimate variability. We provide resources to help users select and access appropriate environmental data for biological applications, including users' guides and interactive visualization, to better infer how organisms experience climate variability and change.
引用
收藏
页数:16
相关论文
共 61 条
[1]   Development of gridded surface meteorological data for ecological applications and modelling [J].
Abatzoglou, John T. .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2013, 33 (01) :121-131
[2]   TEMPERATURE, ACTIVITY, AND LIZARD LIFE-HISTORIES [J].
ADOLPH, SC ;
PORTER, WP .
AMERICAN NATURALIST, 1993, 142 (02) :273-295
[3]   Standards for distribution models in biodiversity assessments [J].
Araujo, Miguel B. ;
Anderson, Robert P. ;
Marcia Barbosa, A. ;
Beale, Colin M. ;
Dormann, Carsten F. ;
Early, Regan ;
Garcia, Raquel A. ;
Guisan, Antoine ;
Maiorano, Luigi ;
Naimi, Babak ;
O'Hara, Robert B. ;
Zimmermann, Niklaus E. ;
Rahbek, Carsten .
SCIENCE ADVANCES, 2019, 5 (01)
[4]  
BAKKEN GS, 1992, AM ZOOL, V32, P194
[5]   Advances in Monitoring and Modelling Climate at Ecologically Relevant Scales [J].
Bramer, Isobel ;
Anderson, Barbara J. ;
Bennie, Jonathan ;
Bladon, Andrew J. ;
De Frenne, Pieter ;
Hemming, Deborah ;
Hill, Ross A. ;
Kearney, Michael R. ;
Korner, Christian ;
Korstjens, Amanda H. ;
Lenoir, Jonathan ;
Maclean, Ilya M. D. ;
Marsh, Christopher D. ;
Morecroft, Michael D. ;
Ohlemuller, Ralf ;
Slater, Helen D. ;
Suggitt, Andrew J. ;
Zellweger, Florian ;
Gillingham, Phillipa K. .
NEXT GENERATION BIOMONITORING, PT 1, 2018, 58 :101-161
[6]   Mechanistic forecasts of species responses to climate change: The promise of biophysical ecology [J].
Briscoe, Natalie J. ;
Morris, Shane D. ;
Mathewson, Paul D. ;
Buckley, Lauren B. ;
Jusup, Marko ;
Levy, Ofir ;
Maclean, Ilya M. D. ;
Pincebourde, Sylvain ;
Riddell, Eric A. ;
Roberts, Jessica A. ;
Schouten, Rafael ;
Sears, Michael W. ;
Kearney, Michael Ray .
GLOBAL CHANGE BIOLOGY, 2023, 29 (06) :1451-1470
[7]   Too hot to hunt: Mechanistic predictions of thermal refuge from cat predation risk [J].
Briscoe, Natalie J. ;
McGregor, Hugh ;
Roshier, David ;
Carter, Andrew ;
Wintle, Brendan A. ;
Kearney, Michael R. .
CONSERVATION LETTERS, 2022, 15 (05)
[8]   Forecasting species range dynamics with process-explicit models: matching methods to applications [J].
Briscoe, Natalie J. ;
Elith, Jane ;
Salguero-Gomez, Roberto ;
Lahoz-Monfort, Jose J. ;
Camac, James S. ;
Giljohann, Katherine M. ;
Holden, Matthew H. ;
Hradsky, Bronwyn A. ;
Kearney, Michael R. ;
McMahon, Sean M. ;
Phillips, Ben L. ;
Regan, Tracey J. ;
Rhodes, Jonathan R. ;
Vesk, Peter A. ;
Wintle, Brendan A. ;
Yen, Jian D. L. ;
Guillera-Arroita, Gurutzeta .
ECOLOGY LETTERS, 2019, 22 (11) :1940-1956
[9]   Linking traits to energetics and population dynamics to predict lizard ranges in changing environments [J].
Buckley, Lauren B. .
AMERICAN NATURALIST, 2008, 171 (01) :E1-E19
[10]   Environmental variability shapes evolution, plasticity and biogeographic responses to climate change [J].
Buckley, Lauren B. ;
Kingsolver, Joel G. .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2019, 28 (10) :1456-1468