Classifying beams carrying orbital angular momentum with machine learning: tutorial

被引:24
作者
Avramov-zamurovic, S. V. E. T. L. A. N. A. [1 ]
Esposito, Joel M. [1 ]
Nelson, C. H. A. R. L. E. S. [2 ]
机构
[1] US Naval Acad, Weap Robot & Control Engn Dept, 597 McNair Rd Hopper Hall, Annapolis, MD 21402 USA
[2] US Naval Acad, Elect & Comp Engn Dept, 597 McNair Rd Hopper Hall, Annapolis, MD 21402 USA
关键词
ADAPTIVE OPTICS SYSTEMS; DEEP NEURAL-NETWORKS; ATMOSPHERIC-TURBULENCE; PATTERN-RECOGNITION; VORTEX MODES; PROPAGATION; PERFORMANCE; OCEAN;
D O I
10.1364/JOSAA.474611
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This tutorial discusses optical communication systems that propagate light carrying orbital angular momentum through random media and use machine learning (aka artificial intelligence) to classify the distorted images of the received alphabet symbols. We assume the reader is familiar with either optics or machine learning but is likely not an expert in both. We review select works on machine learning applications in various optics areas with a focus on beams that carry orbital angular momentum. We then discuss optical experimental design, including generating Laguerre-Gaussian beams, creating and characterizing optical turbulence, and engineering considerations when capturing the images at the receiver. We then provide an accessible primer on convolutional neural networks, a machine learning technique that has proved effective at image classification. We conclude with a set of best prac-tices for the field and provide an example code and a benchmark dataset for researchers looking to try out these techniques.(c) 2022 Optica Publishing Group
引用
收藏
页码:64 / 77
页数:14
相关论文
共 74 条
[1]  
Avramov-Zamurovic S., 2022, MACHINE LEARNING OAM
[2]   Experimentally evaluating beam scintillation and vortex structure as a function of topological charge in underwater optical turbulence [J].
Avramov-Zamurovic, Svetlana ;
Nelson, Charles ;
Esposito, Joel M. .
OPTICS COMMUNICATIONS, 2022, 513
[3]   Effects of underwater optical turbulence on light carrying orbital angular momentum and its classification using machine learning [J].
Avramov-Zamurovic, Svetlana ;
Nelson, Charles ;
Esposito, Joel M. .
JOURNAL OF MODERN OPTICS, 2021, 68 (19) :1041-1053
[4]   Machine learning-aided classification of beams carrying orbital angular momentum propagated in highly turbid water [J].
Avramov-Zamurovic, Svetlana ;
Watnik, Abbie T. ;
Lindle, James R. ;
Judd, K. Peter ;
Esposito, Jose M. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2020, 37 (10) :1662-1672
[5]   Designing laser beams carrying OAM for a high-performance underwater communication system [J].
Avramov-Zamurovic, Svetlana ;
Watnik, Abbie T. ;
Lindle, James R. ;
Judd, K. Peter .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2020, 37 (05) :876-887
[6]   Benchmark Analysis of Representative Deep Neural Network Architectures [J].
Bianco, Simone ;
Cadene, Remi ;
Celona, Luigi ;
Napoletano, Paolo .
IEEE ACCESS, 2018, 6 :64270-64277
[7]   Efficient channel modeling of structured light in turbulence using generative adversarial networks [J].
Briantcev, Dmitrii ;
Cox, Mitchell A. ;
Trichili, Abderrahmen ;
Drozdov, Alice, V ;
Ooi, Boon S. ;
Alouini, Mohamed-Slim .
OPTICS EXPRESS, 2022, 30 (05) :7238-7252
[8]  
Burger L, 2008, S AFR J SCI, V104, P129
[9]   Machine learning based accurate recognition of fractional optical vortex modes in atmospheric environment [J].
Cao, Meng ;
Yin, Yaling ;
Zhou, Jingwen ;
Tang, Jihong ;
Cao, Luping ;
Xia, Yong ;
Yin, Jianping .
APPLIED PHYSICS LETTERS, 2021, 119 (14)
[10]   Synthesis of Im-Bessel correlated beams via coherent modes [J].
Chen, Xi ;
Li, Jia ;
Rafsanjani, Seyed Mohammad Hashemi ;
Korotkova, Olga .
OPTICS LETTERS, 2018, 43 (15) :3590-3593