High Zinc Utilization Aqueous Zinc Ion Batteries Enabled by 3D Printed Graphene Arrays

被引:94
作者
Wu, Buke [1 ,2 ,3 ]
Guo, Binbin [2 ]
Chen, Yuzhu [2 ]
Mu, Yongbiao [1 ,2 ,3 ]
Qu, Hongqiao [2 ]
Lin, Meng [2 ,3 ]
Bai, Jiaming [2 ]
Zhao, Tianshou [1 ,2 ,3 ]
Zeng, Lin [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Key Lab Adv Energy Storage, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, SUSTech Energy Inst Carbon Neutral, Shenzhen 518055, Peoples R China
关键词
3D printing; Zinc anode; Zinc ion batteries; High energy density; Array structures; CATHODE; ELECTRODEPOSITION; REDUCTION; ANODE; OXIDE;
D O I
10.1016/j.ensm.2022.10.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The commercialization of aqueous zinc ion batteries requires good reversibility and high zinc utilization of zinc anode. For commonly applied 2D zinc anodes (zinc foils), their electrochemical performance and reversibility are often negatively correlated with the zinc utilization owing to the formation of zinc dendrites at the electrodeseparator interphase. To overcome the disadvantages of 2D geometric design of zinc anode, this work fabricated two types of 3D printing graphene arrays (3DGs), tube arrays and pilar arrays, to simultaneously improve the reversibility and utilization of zinc anodes. The highly ordered 3D printed tubes/pillars array structures can accommodate the significant volume change during the zinc reversibly deposition/dissolution process and modify the zinc deposition on 3DGs. The array structures can also buffer the interaction between the metallic zinc and separator to protect AZIBs from short circuits. Consequently, the 3DGs showed considerable columbic efficiencies at current densities of 10-80 mA cm-2. The 3DGs@Zn anode delivered a lifespan of 1100 h in zinc symmetric cell at 2 mA cm-2 (1 mAh cm-2). The pouch cells fabricated with 3DGs@Zn anodes and V2O5 cathode delivered areal capacity (3.76 mAh cm-2) and zinc utilization (47.12%) under a practical N/P ratio (1.74:1). This work will overcome the limitations of the 2D geometric design of anodes for next-generation battery technologies.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 50 条
[41]   High-Power Aqueous Zinc-Ion Batteries for Customized Electronic Devices [J].
Kim, Chanhoon ;
Ahn, Bok Yeop ;
Wei, Teng-Sing ;
Jo, Yejin ;
Jeong, Sunho ;
Choi, Youngmin ;
Kim, Il-Doo ;
Lewis, Jennifer A. .
ACS NANO, 2018, 12 (12) :11838-11846
[42]   Separators in aqueous zinc-ion batteries: Interfacial chemistry and optimization strategies [J].
Yang, Lu ;
Zhou, Miao ;
Xie, Yijian ;
Shen, Xiaoyi ;
Liang, Shuquan ;
Fang, Guozhao .
ENERGY STORAGE MATERIALS, 2024, 67
[43]   Construction of chemical self-charging zinc ion batteries based on defect coupled nitrogen modulation of zinc manganite vertical graphene arrays [J].
Qiu, Wenda ;
Lin, Zhenchao ;
Xiao, Hongbing ;
Zhang, Guoming ;
Gao, Hong ;
Feng, Huajie ;
Lu, Xihong .
MATERIALS ADVANCES, 2021, 2 (20) :6694-6702
[44]   Advanced Aqueous Zinc-Ion Batteries Enabled by Three-Dimensional Amorphous Vanadium Pentoxide@Graphene Microspheres [J].
Wang, Zhiying ;
Li, Lina ;
Zhao, Fan ;
Xu, Huiting ;
Peng, Wenchao ;
Liu, Jiapeng .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (03) :1359-1368
[45]   Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries [J].
Huang, Shuo ;
Zhu, Jiacai ;
Tian, Jinlei ;
Niu, Zhiqiang .
CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (64) :14480-14494
[46]   Fiber-Based Materials for Aqueous Zinc Ion Batteries [J].
Jia, Hao ;
Liu, Kaiyu ;
Lam, Yintung ;
Tawiah, Benjamin ;
Xin, John H. ;
Nie, Wenqi ;
Jiang, Shou-xiang .
ADVANCED FIBER MATERIALS, 2023, 5 (01) :36-58
[47]   3D printed dual network Cross-Linked hydrogel electrolytes for high area capacity flexible zinc ion Micro-Batteries [J].
Lu, Yongyi ;
Li, Zongyang ;
Wang, Xin ;
Wang, Zhihao ;
Li, Min ;
Hu, Xinyu ;
Wang, Yuehui ;
Liu, Haimei ;
Wang, Yonggang .
CHEMICAL ENGINEERING JOURNAL, 2024, 490
[48]   Fast ion transport network enhanced 3D Zn anode for ultra-stable zinc ion batteries [J].
Li, Qi ;
Liu, Guizhou ;
Zhou, Shixiang ;
Tang, Sihan ;
Luo, Ruiying ;
Wei, Peng ;
Fang, Chun ;
Yan, Chunze .
CHEMICAL ENGINEERING JOURNAL, 2025, 506
[49]   Oxygen-defective V2O5 nanosheets boosting 3D diffusion and reversible storage of zinc ion for aqueous zinc-ion batteries [J].
Wang, Zihan ;
Liang, Pei ;
Zhang, Rongguo ;
Liu, Zhimin ;
Li, Wenying ;
Pan, Zhigang ;
Yang, Hao ;
Shen, Xiaodong ;
Wang, Jin .
APPLIED SURFACE SCIENCE, 2021, 562
[50]   The LiV3O8 Superlattice Cathode with Optimized Zinc Ion Insertion Chemistry for High Mass-Loading Aqueous Zinc-Ion Batteries [J].
Wu, Menghua ;
Shi, Chuan ;
Yang, Junwei ;
Zong, Yu ;
Chen, Yu ;
Ren, Zhiguo ;
Zhao, Yuanxin ;
Li, Zhao ;
Zhang, Wei ;
Wang, Liyu ;
Huang, Xinliang ;
Wen, Wen ;
Li, Xiaolong ;
Ning, Xin ;
Ren, Xiaochuan ;
Zhu, Daming .
ADVANCED MATERIALS, 2024, 36 (23)