Metric Dimension and Diameter in Bipartite Graphs

被引:3
作者
Dankelmann, Peter [1 ]
Morgan, Jane [2 ]
Rivett-Carnac, Emily [1 ]
机构
[1] Univ Johannesburg, Johannesburg, South Africa
[2] Univ KwaZulu Natal, Durban, South Africa
关键词
metric dimension; resolving set; diameter; maximum degree; bipartite graph; RESOLVABILITY;
D O I
10.7151/dmgt.2382
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph and W a set of vertices of G. If every vertex of G is determined by its distances to the vertices in W, then W is said to be a resolving set. The cardinality of a minimum resolving set is called the metric dimension of G. In this paper we determine the maximum number of vertices in a bipartite graph of given metric dimension and diameter. We also determine the minimum metric dimension of a bipartite graph of given maximum degree.
引用
收藏
页码:487 / 498
页数:12
相关论文
共 14 条
[1]   BOUNDING THE ORDER OF A GRAPH USING ITS DIAMETER AND METRIC DIMENSION: A STUDY THROUGH TREE DECOMPOSITIONS AND VC DIMENSION [J].
Beaudou, Laurent ;
Dankelmann, Peter ;
Foucaud, Florent ;
Henning, Michael A. ;
Mary, Arnaud ;
Parreau, Aline .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (02) :902-918
[2]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113
[3]   Resolvability and the upper dimension of graphs [J].
Chartrand, G ;
Poisson, C ;
Zhang, P .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (12) :19-28
[4]   A Comparison between the Metric Dimension and Zero Forcing Number of Trees and Unicyclic Graphs [J].
Eroh, Linda ;
Kang, Cong X. ;
Yi, Eunjeong .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (06) :731-747
[5]   Identification, location-domination and metric dimension on interval and permutation graphs. I. Bounds [J].
Foucaud, Florent ;
Mertzios, George B. ;
Naserasr, Reza ;
Parreau, Aline ;
Valicov, Petru .
THEORETICAL COMPUTER SCIENCE, 2017, 668 :43-58
[6]  
Harary R. A., 1976, Ars Comb, V2, P191
[7]  
Hernando C, 2010, ELECTRON J COMB, V17
[8]   Landmarks in graphs [J].
Khuller, S ;
Raghavachari, B ;
Rosenfeld, A .
DISCRETE APPLIED MATHEMATICS, 1996, 70 (03) :217-229
[9]   COMPUTING THE METRIC DIMENSION OF A GRAPH FROM PRIMARY SUBGRAPHS [J].
Kuziak, Dorota ;
Rodriguez-Velazquez, Juan A. ;
Yero, Ismael G. .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (01) :273-293
[10]   Comparing the metric and strong dimensions of graphs [J].
Moravcik, Gaia ;
Oellermann, Ortrud R. ;
Yusim, Samuel .
DISCRETE APPLIED MATHEMATICS, 2017, 220 :68-79