Full-Wave Simulation of Contact-Nonlinearity-Induced Passive Intermodulation Using a Nonlinear Interface Boundary Model

被引:0
作者
Zhao, Xiaolong [1 ]
He, Yongning [1 ]
Zhang, Anxue [2 ]
机构
[1] Xi An Jiao Tong Univ, Fac Elect & Informat Engn, Sch Microelect, Key Lab Micronano Elect & Syst Integrat Xian City, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Fac Elect & Informat Engn, Sch Informat & Commun Engn, Xian 710049, Peoples R China
来源
IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS | 2024年 / 34卷 / 06期
关键词
Finite difference methods; Rectangular waveguides; Metals; Flanges; Mathematical models; Boundary conditions; Surface impedance; Contact nonlinearity; finite-difference time domain (FDTD); linearity nonlinearity separation (LNS); nonlinear interface boundary condition; passive intermodulation (PIM);
D O I
10.1109/LMWT.2024.3381953
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Metal contact generates weak nonlinearity in the contact interface causing passive intermodulation (PIM) for microwave components. In this letter, we proposed a nonlinear interface boundary model to describe the metal contact nonlinearity and utilized the linearity-nonlinearity separation (LNS) finite-difference time-domain (FDTD) method to implement the full-wave PIM simulation. A PIM level of a rectangular waveguide was calculated, which is consistent with the analytical theory and the experimental results. Electromagnetic (EM)-field distribution of the PIM signal was also extracted, which visualizes the PIM signal propagation in the rectangular waveguide.
引用
收藏
页码:583 / 586
页数:4
相关论文
共 13 条
  • [1] INTERMODULATION GENERATION BY ELECTRON-TUNNELING THROUGH ALUMINUM-OXIDE FILMS
    BOND, CD
    GUENZER, CS
    CAROSELLA, CA
    [J]. PROCEEDINGS OF THE IEEE, 1979, 67 (12) : 1643 - 1652
  • [2] Elsherbeni V., 2016, FINITE DIFFERENCE TI
  • [3] Prediction of passive intermodulation from coaxial connectors in microwave networks
    Henrie, Justin
    Christianson, Andrew
    Chappell, William J.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2008, 56 (01) : 209 - 216
  • [4] Modeling of Passive Intermodulation With Electrical Contacts in Coaxial Connectors
    Jin, Qiuyan
    Gao, Jinchun
    Flowers, George T.
    Wu, Yongle
    Xie, Gang
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (09) : 4007 - 4016
  • [5] Li TJ, 2018, APPL COMPUT ELECTROM, V33, P935
  • [6] Lindell I.V., 2019, BOUNDARY CONDITIONS
  • [7] Passive-intermodulation analysis between rough rectangular waveguide flanges
    Vicente, C
    Hartnagel, HL
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2005, 53 (08) : 2515 - 2525
  • [8] Wang XB, 2011, PR ELECTROMAGN RES S, P181
  • [9] Wendt T, 2019, PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), P90, DOI [10.1109/ICEAA.2019.8879021, 10.1109/iceaa.2019.8879021]
  • [10] An Equivalent Circuit Model to Analyze Passive Intermodulation of Loose Contact Coaxial Connectors
    Yang, Huiping
    Wen, He
    Qi, Yihong
    Fan, Jun
    [J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2018, 60 (05) : 1180 - 1189