Heterogeneous graph neural networks for fraud detection and explanation in supply chain finance

被引:11
作者
Wu, Bin [1 ]
Chao, Kuo-Ming [1 ,2 ]
Li, Yinsheng [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai, Peoples R China
[2] Univ Roehampton, Sch Arts Humanities & Social Sci, London, England
关键词
Fraud detection; Supply chain finance; Graph neural network; Multitask learning; Graph explainability; Heterogeneous graph;
D O I
10.1016/j.is.2023.102335
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is a critical mission for financial service providers to discover fraudulent borrowers in a supply chain. The borrowers' transactions in an ongoing business are inspected to support the providers' decision on whether to lend the money. Considering multiple participants in a supply chain business, the borrowers may use sophisticated tricks to cheat, making fraud detection challenging. In this work, we propose a multitask learning framework, MultiFraud, for complex fraud detection with reasonable explanation. The heterogeneous information from multi-view around the entities is leveraged in the detection framework based on heterogeneous graph neural networks. MultiFraud enables multiple domains to share embeddings and enhance modeling capabilities for fraud detection. The developed explainer provides comprehensive explanations across multiple graphs. Experimental results on five datasets demonstrate the framework's effectiveness in fraud detection and explanation across domains.
引用
收藏
页数:13
相关论文
共 62 条
[1]   A survey on the suitability of risk identification techniques in the current networked environment [J].
Aboutorab, Hamed ;
Hussain, Omar K. ;
Saberi, Morteza ;
Hussain, Farookh Khadeer ;
Chang, Elizabeth .
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2021, 178
[2]  
Albashrawi M, 2021, J. Data Sci, V14, P553
[3]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[4]   Explainable AI in Fintech Risk Management [J].
Bussmann, Niklas ;
Giudici, Paolo ;
Marinelli, Dimitri ;
Papenbrock, Jochen .
FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2020, 3
[5]   Exposing safe correlations in transactional datasets [J].
Chicha, Elie ;
Al Bouna, Bechara ;
Wunsche, Kay ;
Chbeir, Richard .
SERVICE ORIENTED COMPUTING AND APPLICATIONS, 2021, 15 (04) :289-307
[6]   Real-time risk monitoring in business processes: A sensor-based approach [J].
Conforti, Raffaele ;
La Rosa, Marcello ;
Fortino, Giancarlo ;
ter Hofstede, Arthur H. M. ;
Recker, Jan ;
Adams, Michael .
JOURNAL OF SYSTEMS AND SOFTWARE, 2013, 86 (11) :2939-2965
[7]   Fraud Prediction in Smart Supply Chains Using Machine Learning Techniques [J].
Constante-Nicolalde, Fabian-Vinicio ;
Guerra-Teran, Paulo ;
Perez-Medina, Jorge-Luis .
APPLIED TECHNOLOGIES (ICAT 2019), PT II, 2020, 1194 :145-159
[8]  
Deng A., 2017, World J. Res. Rev., V4, P16
[9]   Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters [J].
Dou, Yingtong ;
Liu, Zhiwei ;
Sun, Li ;
Deng, Yutong ;
Peng, Hao ;
Yu, Philip S. .
CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, :315-324
[10]   Dependencies for Graphs [J].
Fan, Wenfei ;
Lu, Ping .
ACM TRANSACTIONS ON DATABASE SYSTEMS, 2019, 44 (02)