Some results on complete permutation polynomials and mutually orthogonal Latin squares

被引:0
作者
Vishwakarma, Chandan Kumar [1 ]
Singh, Rajesh P. [1 ]
机构
[1] Cent Univ South Bihar, Dept Math, Gaya, India
关键词
Permutation polynomials; Complete permutation polynomials; Latin square; AGW criterion; FINITE-FIELD PERMUTE; FORM (X(PM); ELEMENTS;
D O I
10.1016/j.ffa.2023.102320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate some classes of complete permu-tation polynomials (CPPs) with the form (L1(x))t + L2(x) for some specific linearized polynomials L1(x) and L2(x) over finite fields. Some constructions of PPs and CPPs over finite fields using the AGW criterion are also proposed. We also ob-tain some constructions of sets of Mutually orthogonal Latin squares (MOLS) using permutation polynomials over finite fields.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 52 条
  • [1] On constructing permutations of finite fields
    Akbary, Amir
    Ghioca, Dragos
    Wang, Qiang
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (01) : 51 - 67
  • [2] On monomial complete permutation polynomials
    Bartoli, Daniele
    Giulietti, Massimo
    Zini, Giovanni
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2016, 41 : 132 - 158
  • [3] Blokhuis A, 2001, FINITE FIELDS AND APPLICATIONS, P37
  • [4] Dengguo Feng, 2011, Coding and Cryptology. Proceedings of the Third International Workshop, IWCC 2011, P109, DOI 10.1007/978-3-642-20901-7_7
  • [5] Dickson D L. E., 1896, ANN MATH, V11, P65, DOI [10.2307/1967217, DOI 10.2307/1967217]
  • [6] Diffie W., 2008, IACR CRYPTOL EPRINT, P1
  • [7] A family of skew Hadamard difference sets
    Ding, Cunsheng
    Yuan, Jin
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) : 1526 - 1535
  • [8] Optimal Ternary Cyclic Codes From Monomials
    Ding, Cunsheng
    Helleseth, Tor
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 5898 - 5904
  • [9] Further results on complete permutation monomials over finite fields
    Feng, Xiutao
    Lin, Dongdai
    Wang, Liping
    Wang, Qiang
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2019, 57 : 47 - 59
  • [10] Further results on permutation polynomials of the form (xpm - x plus δ)s + x over Fp2m
    Gupta, Rohit
    Sharma, R. K.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2018, 50 : 196 - 208