Anisotropic Moser-Trudinger Inequality Involving Ln Norm in the Entire Space Rn

被引:0
作者
Xie, Ru Long [1 ,2 ]
机构
[1] Chaohu Univ, Dept Math, Hefei 238000, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 236000, Peoples R China
基金
中国国家自然科学基金;
关键词
Moser-Trudinger inequality; anisotropic Sobolev norm; blow up analysis; extremal function; unbounded domain;
D O I
10.1007/s10114-023-1692-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F : R-n -> [0,+ infinity) be a convex function of class C-2(R-n\{0}) which is even and positively homogeneous of degree 1, and its polar F-0 represents a Finsler metric on R-n. The anisotropic Sobolev norm in W-1,W-n(R-n) is defined by parallel to u parallel to F = (integral(Rn) (F-n(del u) + vertical bar u vertical bar(n))dx)(1/n). In this paper, the following sharp anisotropic Moser-Trudinger inequality involving L-n norm sup(u is an element of W1,n(Rn)),(parallel to u parallel to F <= 1) integral(Rn) Phi(lambda(n)vertical bar u vertical bar n/n-1 (1 + alpha parallel to u parallel to(n)(n))(1/n-1))dx < +infinity in the entire space R-n for any 0 < alpha < 1 is established, where Phi(t) = e(t) - Sigma(n-2)(j=0) t(j)/j(1), lambda(n) = n n/n-1 kappa(n) 1/n-1 and kappa(n) is the volume of the unit Wulff ball in R-n. It is also shown that the above supremum is infinity for all alpha >= 1. Moreover, we prove the supremum is attained, that is, there exists a maximizer for the above supremum when alpha > 0 is sufficiently small.
引用
收藏
页码:2427 / 2451
页数:25
相关论文
共 53 条
[1]   Trudinger type inequalities in RN and their best exponents [J].
Adachi, S ;
Tanaka, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :2051-2057
[2]   A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES [J].
ADAMS, DR .
ANNALS OF MATHEMATICS, 1988, 128 (02) :385-398
[3]   Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality [J].
Adimurthi ;
Druet, O .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) :295-322
[4]   An Interpolation of Hardy Inequality and Trudinger-Moser Inequality in RN and Its Applications [J].
Adimurthi ;
Yang, Yunyan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (13) :2394-2426
[5]   A singular Moser-Trudinger embedding and its applications [J].
Adimurthi ;
Sandeep, K. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 13 (5-6) :585-603
[6]   Convex symmetrization and applications [J].
Alvino, A ;
Ferone, V ;
Trombetti, G ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :275-293
[7]  
[Anonymous], 2000, J. Eur. Math. Soc.
[8]  
[Anonymous], 1976, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
[9]  
[Anonymous], 2001, J. Partial Differ. Equ.
[10]  
Bellettini G., 1996, Hokkaydo Math. J, V25, P537