Radiomics-Based Assessment of OCT Angiography Images for Diabetic Retinopathy Diagnosis

被引:18
作者
Carrera-Escale, Laura [1 ,2 ]
Benali, Anass [1 ,2 ]
Rathert, Ann-Christin [1 ,2 ]
Martin-Pinardel, Ruben [1 ,2 ,3 ]
Bernal-Morales, Carolina [4 ]
Ale-Chilet, Anibal [4 ]
Barraso, Marina [4 ]
Marin-Martinez, Sara [4 ]
Feu-Basilio, Silvia [4 ]
Rosines-Fonoll, Josep [4 ]
Hernandez, Teresa [3 ,4 ]
Vila, Irene [3 ,4 ]
Castro-Dominguez, Rafael [4 ]
Oliva, Cristian [3 ,4 ]
Vinagre, Irene [3 ,5 ,6 ]
Ortega, Emilio [3 ,5 ,6 ]
Gimenez, Marga [3 ,5 ,6 ]
Vellido, Alfredo [1 ,2 ]
Romero, Enrique [1 ,2 ]
Zarranz-Ventura, Javier [3 ,4 ,5 ,7 ,8 ]
机构
[1] Intelligent Data Sci & Artificial Intelligence IDE, Barcelona, Spain
[2] Univ Politecn Catalunya UPC, Dept Comp Sci, Fac Informat Barcelona FIB, Barcelona, Spain
[3] August Pi i Sunyer Biomed Res Inst IDIBAPS, Barcelona, Spain
[4] Hosp Clin Barcelona, Inst Clin dOftalmol ICOF, Barcelona, Spain
[5] Hosp Clin Barcelona, Diabet Unit, Barcelona, Spain
[6] Hosp Clin Barcelona, Inst Clin Malalties Digest & Metab ICMDM, Barcelona, Spain
[7] Univ Barcelona, Sch Med, Barcelona, Spain
[8] C Sabino Arana 1, Barcelona 08028, Spain
来源
OPHTHALMOLOGY SCIENCE | 2023年 / 3卷 / 02期
关键词
Artificial intelligence; Diabetic retinopathy; Machine learning; OCT angi-ography; MACULAR DEGENERATION; VALIDATION; PREDICTION; SYSTEM; AMD;
D O I
10.1016/j.xops.2022.100259
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To evaluate the diagnostic accuracy of machine learning (ML) techniques applied to radiomic features extracted from OCT and OCT angiography (OCTA) images for diabetes mellitus (DM), diabetic reti-nopathy (DR), and referable DR (R-DR) diagnosis.Design: Cross-sectional analysis of a retinal image dataset from a previous prospective OCTA study (ClinicalTrials.gov NCT03422965). Participants: Patients with type 1 DM and controls included in the progenitor study.Methods: Radiomic features were extracted from fundus retinographies, OCT, and OCTA images in each study eye. Logistic regression, linear discriminant analysis, support vector classifier (SVC)-linear, SVC-radial basis function, and random forest models were created to evaluate their diagnostic accuracy for DM, DR, and R-DR diagnosis in all image types.Main Outcome Measures: Area under the receiver operating characteristic curve (AUC) mean and standard deviation for each ML model and each individual and combined image types.Results: A dataset of 726 eyes (439 individuals) were included. For DM diagnosis, the greatest AUC was observed for OCT (0.82, 0.03). For DR detection, the greatest AUC was observed for OCTA (0.77, 0.03), especially in the 3 x 3 mm superficial capillary plexus OCTA scan (0.76, 0.04). For R-DR diagnosis, the greatest AUC was observed for OCTA (0.87, 0.12) and the deep capillary plexus OCTA scan (0.86, 0.08). The addition of clinical variables (age, sex, etc.) improved most models AUC for DM, DR and R-DR diagnosis. The performance of the models was similar in unilateral and bilateral eyes image datasets. Conclusions: Radiomics extracted from OCT and OCTA images allow identification of patients with DM, DR, and R-DR using standard ML classifiers. OCT was the best test for DM diagnosis, OCTA for DR and R-DR diagnosis and the addition of clinical variables improved most models. This pioneer study demonstrates that radiomics-based ML techniques applied to OCT and OCTA images may be an option for DR screening in patients with type 1 DM.
引用
收藏
页数:13
相关论文
共 44 条
[1]   Pancreas image mining: a systematic review of radiomics [J].
Abunahel, Bassam M. ;
Pontre, Beau ;
Kumar, Haribalan ;
Petrov, Maxim S. .
EUROPEAN RADIOLOGY, 2021, 31 (05) :3447-3467
[2]   Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus-Report 2: Diabetic Kidney Disease [J].
Ale-Chilet, Anibal ;
Bernal-Morales, Carolina ;
Barraso, Marina ;
Hernandez, Teresa ;
Oliva, Cristian ;
Vinagre, Irene ;
Ortega, Emilio ;
Figueras-Roca, Marc ;
Sala-Puigdollers, Anna ;
Esquinas, Cristina ;
Gimenez, Marga ;
Esmatjes, Enric ;
Adan, Alfredo ;
Zarranz-Ventura, Javier .
JOURNAL OF CLINICAL MEDICINE, 2022, 11 (01)
[3]   Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus. Report 1: Diabetic Retinopathy [J].
Barraso, Marina ;
Ale-Chilet, Anibal ;
Hernandez, Teresa ;
Oliva, Cristian ;
Vinagre, Irene ;
Ortega, Emilio ;
Figueras-Roca, Marc ;
Sala-Puigdollers, Anna ;
Esquinas, Cristina ;
Esmatjes, Enric ;
Adan, Alfredo ;
Zarranz-Ventura, Javier .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (10) :1-15
[4]   Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus. Report 4: Glycated Haemoglobin [J].
Bernal-Morales, Carolina ;
Ale-Chilet, Anibal ;
Martin-Pinardel, Ruben ;
Barraso, Marina ;
Hernandez, Teresa ;
Oliva, Cristian ;
Vinagre, Irene ;
Ortega, Emilio ;
Figueras-Roca, Marc ;
Sala-Puigdollers, Anna ;
Gimenez, Marga ;
Esmatjes, Enric ;
Adan, Alfredo ;
Zarranz-Ventura, Javier .
DIAGNOSTICS, 2021, 11 (09)
[5]   Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach [J].
Bogunovic, Hrvoje ;
Waldstein, Sebastian M. ;
Schlegl, Thomas ;
Langs, Georg ;
Sadeghipour, Amir ;
Liu, Xuhui ;
Gerendas, Bianca S. ;
Osborne, Aaron ;
Schmidt-Erfurth, Ursula .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (07) :3240-3248
[6]   Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI [J].
Braman, Nathaniel M. ;
Etesami, Maryam ;
Prasanna, Prateek ;
Dubchuk, Christina ;
Gilmore, Hannah ;
Tiwari, Pallavi ;
Pletcha, Donna ;
Madabhushi, Anant .
BREAST CANCER RESEARCH, 2017, 19
[7]   Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks [J].
Brown, James M. ;
Campbell, J. Peter ;
Beers, Andrew ;
Chang, Ken ;
Ostmo, Susan ;
Chan, R. V. Paul ;
Dy, Jennifer ;
Erdogmus, Deniz ;
Ioannidis, Stratis ;
Kalpathy-Cramer, Jayashree ;
Chiang, Michael F. .
JAMA OPHTHALMOLOGY, 2018, 136 (07) :803-810
[8]   Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks [J].
Burlina, Philippe M. ;
Joshi, Neil ;
Pekala, Michael ;
Pacheco, Katia D. ;
Freund, David E. ;
Bressler, Neil M. .
JAMA OPHTHALMOLOGY, 2017, 135 (11) :1170-1176
[9]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[10]   DTI-based radiomics signature for the detection of early diabetic kidney damage [J].
Deng, Yi ;
Yang, Bi-ran ;
Luo, Jin-wen ;
Du, Guo-xin ;
Luo, Liang-ping .
ABDOMINAL RADIOLOGY, 2020, 45 (08) :2526-2531