The weighted Hilbert-Schmidt numerical radius

被引:7
作者
Zamani, Ali [1 ]
机构
[1] Damghan Univ, Sch Math & Comp Sci, POB 36715-364, Damghan, Iran
关键词
Numerical radius; Usual operator norm; Weighted numerical radius; Hilbert-Schmidt norm; Operator matrix; Inequality; UPPER-BOUNDS; INEQUALITIES; OPERATORS; EQUALITY;
D O I
10.1016/j.laa.2023.06.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let ]L$(H) be the algebra of all bounded linear operators on a Hilbert space H and let N(& BULL;) be a norm on ]L$(H). For every 0 & LE; & nu; & LE; 1, we introduce the w(N,& nu;)(A) as an extension of the classical numerical radius by w(N,& nu; )(A) := sup & theta;& ISIN;R N (& nu;ei & theta;A & PLUSMN; (1 - & nu;)e-i & theta;A* and investigate basic properties of this notion and prove inequalities involving it. In particular, when N(& BULL;) is the Hilbert-Schmidt norm & BULL;2, we present several the weighted Hilbert-Schmidt numerical radius inequalities for operator matrices. Furthermore, we give a refinement of the triangle inequality for the Hilbert-Schmidt norm as follows: & LE; A 2 & PLUSMN; B 2. Our results extend some theorems due to F. Kittaneh et al. (2019). & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:225 / 243
页数:19
相关论文
共 29 条
[11]   GENERALIZED NUMERICAL RADIUS AND RELATED INEQUALITIES [J].
Bottazzi, T. ;
Conde, C. .
OPERATORS AND MATRICES, 2021, 15 (04) :1289-1308
[12]   On A-numerical radius inequalities for 2 x 2 operator matrices [J].
Chandra Rout, Nirmal ;
Sahoo, Satyajit ;
Mishra, Debasisha .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (14) :2672-2692
[13]   A SURVEY OF SOME RECENT INEQUALITIES FOR THE NORM AND NUMERICAL RADIUS OF OPERATORS IN HILBERT SPACES [J].
Dragomir, Sever S. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2007, 1 (02) :154-175
[14]   Equality of three numerical radius inequalities [J].
Gau, Hwa-Long ;
Wu, Pei Yuan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 554 :51-67
[15]   Numerical Radius Inequalities for Certain 2 x 2 Operator Matrices [J].
Hirzallah, Omar ;
Kittaneh, Fuad ;
Shebrawi, Khalid .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (01) :129-147
[16]   Cartesian decomposition and numerical radius inequalities [J].
Kittaneh, Fuad ;
Moslehian, Mohammad Sal ;
Yamazaki, Takeaki .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 :46-53
[17]   Inequalities for operator space numerical radius of 2 x 2 block matrices [J].
Moslehian, Mohammad Sal ;
Sattari, Mostafa .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (01)
[18]  
Rao D.K.M., 1997, NUMERICAL RANGE
[19]   Heinz-type numerical radii inequalities [J].
Sababheh, M. .
LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (05) :953-964
[20]  
Sain D, 2021, ANN FUNCT ANAL, V12, DOI 10.1007/s43034-021-00138-5