The Nanotechnology-Based Approaches against Kirsten Rat Sarcoma-Mutated Cancers

被引:1
作者
Andrade, Fernanda [1 ,2 ,3 ]
German-Cortes, Julia [1 ,2 ]
Montero, Sara [1 ,2 ]
Carcavilla, Pilar [1 ,2 ]
Baranda-Martinez-Abascal, Diego [1 ,2 ]
Molto-Abad, Marc [1 ,2 ,4 ]
Seras-Franzoso, Joaquin [1 ,2 ,5 ]
Diaz-Riascos, Zamira Vanessa [1 ,2 ,4 ]
Rafael, Diana [1 ,2 ,4 ]
Abasolo, Ibane [1 ,2 ,4 ,6 ]
机构
[1] Vall dHebron Univ Hosp, Vall dHebron Barcelona Hosp Campus, Vall dHebron Inst Res VHIR, Clin Biochem Drug Delivery & Therapy Grp CB DDT, Barcelona 08035, Spain
[2] Inst Salud Carlos III, Ctr Invest Biomed Red Bioingn Biomat & Nanomed CIB, Barcelona 08035, Spain
[3] Univ Barcelona UB, Dept Farm & Tecnol Farmaceut & Fis Quim, Fac Farm & Ciencies Alimentacio, Barcelona 08028, Spain
[4] Univ Autonoma Barcelona UAB, Vall dHebron Inst Recerca VHIR, Funct Validat & Preclin Res FVPR ICTS Nanbiosis U2, Barcelona 08035, Spain
[5] Univ Autonoma Barcelona UAB, Dept Genet & Microbiol, Bellaterra 08193, Spain
[6] Vall dHebron Univ Hosp, Vall dHebron Barcelona Hosp Campus, Clin Biochem Serv, Barcelona 08035, Spain
关键词
KRAS; KRAS mutation; nanotechnology; nanomedicine; cancer treatment; delivery systems; CELL LUNG-CANCER; ONCOGENIC KRAS; NANOPARTICLE DELIVERY; COLORECTAL-CANCER; K-RAS; SORAFENIB; COMBINATION; INHIBITION; PROLIFERATION; BINIMETINIB;
D O I
10.3390/pharmaceutics15061686
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Kirsten rat sarcoma (KRAS) is a small GTPase which acts as a molecular switch to regulate several cell biological processes including cell survival, proliferation, and differentiation. Alterations in KRAS have been found in 25% of all human cancers, with pancreatic cancer (90%), colorectal cancer (45%), and lung cancer (35%) being the types of cancer with the highest mutation rates. KRAS oncogenic mutations are not only responsible for malignant cell transformation and tumor development but also related to poor prognosis, low survival rate, and resistance to chemotherapy. Although different strategies have been developed to specifically target this oncoprotein over the last few decades, almost all of them have failed, relying on the current therapeutic solutions to target proteins involved in the KRAS pathway using chemical or gene therapy. Nanomedicine can certainly bring a solution for the lack of specificity and effectiveness of anti-KRAS therapy. Therefore, nanoparticles of different natures are being developed to improve the therapeutic index of drugs, genetic material, and/or biomolecules and to allow their delivery specifically into the cells of interest. The present work aims to summarize the most recent advances related to the use of nanotechnology for the development of new therapeutic strategies against KRAS-mutated cancers.
引用
收藏
页数:24
相关论文
共 125 条
[31]   Adagrasib in Non-Small-Cell Lung Cancer Harboring a KRASG12C Mutation [J].
Jaenne, Pasi A. ;
Riely, Gregory J. ;
Gadgeel, Shirish M. ;
Heist, Rebecca S. ;
Ou, Sai-Hong I. ;
Pacheco, Jose M. ;
Johnson, Melissa L. ;
Sabari, Joshua K. ;
Leventakos, Konstantinos ;
Yau, Edwin ;
Bazhenova, Lyudmila ;
Negrao, Marcelo V. ;
Pennell, Nathan A. ;
Zhang, Jun ;
Anderes, Kenna ;
Der-Torossian, Hirak ;
Kheoh, Thian ;
Velastegui, Karen ;
Yan, Xiaohong ;
Christensen, James G. ;
Chao, Richard C. ;
Spira, Alexander I. .
NEW ENGLAND JOURNAL OF MEDICINE, 2022, 387 (02) :120-131
[32]   Clinical Relevance of KRAS in Human Cancers [J].
Jancik, Sylwia ;
Drabek, Jiri ;
Radzioch, Danuta ;
Hajduch, Marian .
JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2010,
[33]   Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor [J].
Janes, Matthew R. ;
Zhang, Jingchuan ;
Li, Lian-Sheng ;
Hansen, Rasmus ;
Peters, Ulf ;
Guo, Xin ;
Chen, Yuching ;
Babbar, Anjali ;
Firdaus, Sarah J. ;
Darjania, Levan ;
Feng, Jun ;
Chen, Jeffrey H. ;
Li, Shuangwei ;
Li, Shisheng ;
Long, Yun O. ;
Thach, Carol ;
Liu, Yuan ;
Zarieh, Ata ;
Ely, Tess ;
Kucharski, Jeff M. ;
Kessler, Linda V. ;
Wu, Tao ;
Yu, Ke ;
Wang, Yi ;
Yao, Yvonne ;
Deng, Xiaohu ;
Zarrinkar, Patrick P. ;
Brehmer, Dirk ;
Dhanak, Dashyant ;
Lorenzi, Matthew V. ;
Hu-Lowe, Dana ;
Patricelli, Matthew P. ;
Ren, Pingda ;
Liu, Yi .
CELL, 2018, 172 (03) :578-+
[34]   Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer [J].
Kamerkar, Sushrut ;
LeBleu, Valerie S. ;
Sugimoto, Hikaru ;
Yang, Sujuan ;
Ruivo, Carolina F. ;
Melo, Sonia A. ;
Lee, J. Jack ;
Kalluri, Raghu .
NATURE, 2017, 546 (7659) :498-+
[35]   KRAS-Mutant Lung Cancer: Targeting Molecular and Immunologic Pathways, Therapeutic Advantages and Restrictions [J].
Karimi, Nastaran ;
Moghaddam, Seyed Javad .
CELLS, 2023, 12 (05)
[36]   Ras oncogenes: split personalities [J].
Karnoub, Antoine E. ;
Weinberg, Robert A. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2008, 9 (07) :517-531
[37]   Progress in biopharmaceutical development [J].
Kesik-Brodacka, Malgorzata .
BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2018, 65 (03) :306-322
[38]   RAS-mediated oncogenic signaling pathways in human malignancies [J].
Khan, Abdul Q. ;
Kuttikrishnan, Shilpa ;
Siveen, Kodappully S. ;
Prabhu, Kirti S. ;
Shanmugakonar, Muralitharan ;
Al-Naemi, Hamda A. ;
Haris, Mohammad ;
Dermime, Said ;
Uddin, Shahab .
SEMINARS IN CANCER BIOLOGY, 2019, 54 :1-13
[39]  
Khan HY, 2022, CANCER RES COMMUN, V2, P342, DOI [10.1158/2767-9764.crc-21-0176, 10.1158/2767-9764.CRC-21-0176]
[40]   Combination of KRAS gene silencing and PI3K inhibition for ovarian cancer treatment [J].
Kim, Min Ju ;
Lee, So Jin ;
Ryu, Ju Hee ;
Kim, Sun Hwa ;
Kwon, Ick Chan ;
Roberts, Thomas M. .
JOURNAL OF CONTROLLED RELEASE, 2020, 318 :98-108