Unraveling the influence of interface defects on antimony trisulfide solar cells

被引:5
作者
Chen, Hongyi [1 ,2 ]
Wang, Cheng [1 ,2 ]
Wang, Shaoying [1 ,2 ]
Li, Ruiming [1 ,2 ]
Zeng, Yan [1 ,2 ]
Li, Zhe [1 ,2 ]
Ou, Zhengwei [1 ,2 ]
Lin, Qianqian [1 ,2 ]
Li, Jianmin [1 ,2 ]
Wang, Ti [1 ,2 ]
Xu, Hongxing [1 ,2 ,3 ,4 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ, Key Lab Artificial Micro & Nanostruct, Minist Educ, Wuhan 430072, Hubei, Peoples R China
[3] Wuhan Inst Quantum Technol, Wuhan 430206, Hubei, Peoples R China
[4] Wuhan Univ, Sch Microelect, Wuhan 430072, Hubei, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2023年 / 78卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Antimony trisulfide; Interface defect; Transient absorption spectroscopy;
D O I
10.1016/j.jechem.2022.11.039
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Antimony trisulfide (Sb2S3) solar cells suffer from large open circuit voltage deficits due to their intrinsic defects which limit the power conversion efficiency. Thus, it is important to elucidate these defects' ori-gin and defects at the interface. Here, we discover that sulfide radical defects have a significant impact on the performance of Sb2S3 solar cells. Moreover, it has been illustrated that these defects at the CdS/Sb2S3 interface can be reduced by optimizing the deposition process. A trap distribution model is used to quan-tify the defect density at the CdS/Sb2S3 interface. It shows that the interface defects can be reduced by 24% by improving the deposition process. This work reveals the importance of interface defects and guides the future optimization of Sb2S3 solar cells.(c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:262 / 267
页数:6
相关论文
共 31 条
[1]   Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell [J].
Barkhouse, D. Aaron R. ;
Gunawan, Oki ;
Gokmen, Tayfun ;
Todorov, Teodor K. ;
Mitzi, David B. .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (01) :6-11
[2]   CARRIER-INDUCED CHANGE IN REFRACTIVE-INDEX OF INP, GAAS, AND INGAASP [J].
BENNETT, BR ;
SOREF, RA ;
DELALAMO, JA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1990, 26 (01) :113-122
[3]   PHYSICS OF SOLAR-CELLS [J].
BOER, KW .
JOURNAL OF APPLIED PHYSICS, 1979, 50 (08) :5356-5370
[4]   Open-Circuit Voltage Loss of Antimony Chalcogenide Solar Cells: Status, Origin, and Possible Solutions [J].
Chen, Chao ;
Tang, Jiang .
ACS ENERGY LETTERS, 2020, 5 (07) :2294-2304
[5]   Highly Improved Sb2S3 Sensitized-Inorganic-Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy [J].
Choi, Yong Chan ;
Lee, Dong Uk ;
Noh, Jun Hong ;
Kim, Eun Kyu ;
Seok, Sang Il .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (23) :3587-3592
[6]   Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells [J].
Christians, Jeffrey A. ;
Leighton, David T., Jr. ;
Kamat, Prashant V. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (03) :1148-1158
[7]   Trap and Transfer. Two-Step Hole Injection Across the Sb2S3/CuSCN Interface in Solid-State Solar Cells [J].
Christians, Jeffrey A. ;
Kamat, Prashant V. .
ACS NANO, 2013, 7 (09) :7967-7974
[8]   Charge carrier dynamics and self-trapping on Sb2S3(100) [J].
Grad, Lisa ;
von Rohr, Fabian O. ;
Hengsberger, Matthias ;
Osterwalder, Jurg .
PHYSICAL REVIEW MATERIALS, 2021, 5 (07)
[9]   Solar cell efficiency tables (Version 60) [J].
Green, Martin A. ;
Dunlop, Ewan D. ;
Hohl-Ebinger, Jochen ;
Yoshita, Masahiro ;
Kopidakis, Nikos ;
Bothe, Karsten ;
Hinken, David ;
Rauer, Michael ;
Hao, Xiaojing .
PROGRESS IN PHOTOVOLTAICS, 2022, 30 (07) :687-701
[10]   ELECTRON-HOLE RECOMBINATION IN GERMANIUM [J].
HALL, RN .
PHYSICAL REVIEW, 1952, 87 (02) :387-387