Anoxygenic phototrophic arsenite oxidation by a Rhodobacter strain

被引:4
|
作者
Wu, Yi-Fei [1 ]
Chen, Jian [2 ]
Xie, Wan-Ying [1 ]
Peng, Chao [3 ]
Tang, Shi-Tong [1 ]
Rosen, Barry P. P. [2 ]
Kappler, Andreas [4 ,5 ]
Zhang, Jun [1 ]
Zhao, Fang-Jie [1 ]
机构
[1] Nanjing Agr Univ, Coll Resources & Environm Sci, Jiangsu Collaborat Innovat Ctr Solid Organ Waste R, Jiangsu Key Lab Organ Waste Utilizat, Nanjing 210095, Peoples R China
[2] Florida Int Univ, Herbert Wertheim Coll Med, Dept Cellular Biol & Pharmacol, Miami, FL 33199 USA
[3] China West Normal Univ, Coll Life Sci, Nanchong, Peoples R China
[4] Univ Tubingen, Dept Geosci, Geomicrobiol, D-72076 Tubingen, Germany
[5] Cluster Excellence EXC 2124 Controlling Microbes F, D-72076 Tubingen, Germany
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
OXIDIZING BACTERIUM; ANAEROBIC OXIDATION; FERROUS IRON; MONO LAKE; RICE; IDENTIFICATION; OXIDASE; EXPRESSION; SPECIATION; DIVERSITY;
D O I
10.1111/1462-2920.16380
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Microbially mediated arsenic redox transformations are key for arsenic speciation and mobility in rice paddies. Whereas anaerobic anoxygenic photosynthesis coupled to arsenite (As(III)) oxidation has been widely examined in arsenic-replete ecosystems, it remains unknown whether this light-dependent process exists in paddy soils. Here, we isolated a phototrophic purple bacteria, Rhodobacter strain CZR27, from an arsenic-contaminated paddy soil and demonstrated its capacity to oxidize As(III) to arsenate (As(V)) using malate as a carbon source photosynthetically. Genome sequencing revealed an As(III)-oxidizing gene cluster (aioXSRBA) encoding an As(III) oxidase. Functional analyses showed that As(III) oxidation under anoxic phototrophic conditions correlated with transcription of the large subunit of the As(III) oxidase aioA gene. Furthermore, the non-As(III) oxidizer Rhodobacter capsulatus SB1003 heterologously expressing aioBA from strain CZR27 was able to oxidize As(III), indicating that aioBA was responsible for the observed As(III) oxidation in strain CZR27. Our study provides evidence for the presence of anaerobic photosynthesis-coupled As(III) oxidation in paddy soils, highlighting the importance of light-dependent, microbe-mediated arsenic redox changes in paddy arsenic biogeochemistry.
引用
收藏
页码:1538 / 1548
页数:11
相关论文
共 50 条
  • [1] Interaction of metals and protons with anoxygenic phototrophic bacteria Rhodobacter blasticus
    Pokrovsky, Oleg S.
    Martinez, Raul E.
    Kompantseva, Elena I.
    Shirokova, Liudmila S.
    CHEMICAL GEOLOGY, 2013, 335 : 75 - 86
  • [2] Iron isotope fractionation in anoxygenic phototrophic Fe(II) oxidation by Rhodobacter ferrooxidans SW2
    Han, Xiaohua
    He, Yongsheng
    Li, Jinhua
    Kappler, Andreas
    Pan, Yongxin
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2022, 332 : 355 - 368
  • [3] FERROUS IRON OXIDATION BY ANOXYGENIC PHOTOTROPHIC BACTERIA
    WIDDEL, F
    SCHNELL, S
    HEISING, S
    EHRENREICH, A
    ASSMUS, B
    SCHINK, B
    NATURE, 1993, 362 (6423) : 834 - 836
  • [4] The genetic basis of anoxygenic photosynthetic arsenite oxidation
    Hernandez-Maldonado, Jaime
    Sanchez-Sedillo, Benjamin
    Stoneburner, Brendon
    Boren, Alison
    Miller, Laurence
    McCann, Shelley
    Rosen, Michael
    Oremland, Ronald S.
    Saltikov, Chad W.
    ENVIRONMENTAL MICROBIOLOGY, 2017, 19 (01) : 130 - 141
  • [5] Oxidation of green rust by anoxygenic phototrophic Fe(II)-oxidising bacteria
    Han, X.
    Tomaszewski, E. J.
    Sorwat, J.
    Pan, Y.
    Kappler, A.
    Byrne, J. M.
    GEOCHEMICAL PERSPECTIVES LETTERS, 2020, 12 : 52 - 57
  • [6] Aerobic anoxygenic phototrophic bacteria
    Yurkov, VV
    Beatty, JT
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (03) : 695 - +
  • [7] Biotechnology of Anoxygenic Phototrophic Bacteria
    Frigaard, Niels-Ulrik
    ANAEROBES IN BIOTECHNOLOGY, 2016, 156 : 139 - 154
  • [8] The fox operon from Rhodobacter strain SW2 promotes phototrophic fe(II) oxidation in Rhodobacter capsulatus SB1003
    Croal, Laura R.
    Jiao, Yongqin
    Newman, Dianne K.
    JOURNAL OF BACTERIOLOGY, 2007, 189 (05) : 1774 - 1782
  • [9] Oxygen and sulfur isotope fractionation during sulfide oxidation by anoxygenic phototrophic bacteria
    Brabec, Michelle Y.
    Lyons, Timothy W.
    Mandernack, Kevin W.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2012, 83 : 234 - 251
  • [10] Light-mediated control of gene expression in the anoxygenic phototrophic bacterium Rhodobacter capsulatus using photocaged inducers
    Hilgers, Fabienne
    Hogenkamp, Fabian
    Klaus, Oliver
    Kruse, Luzie
    Loeschcke, Anita
    Bier, Claus
    Binder, Dennis
    Jaeger, Karl-Erich
    Pietruszka, Jörg
    Drepper, Thomas
    Frontiers in Bioengineering and Biotechnology, 2022, 10