High-order Runge-Kutta structure-preserving methods for the coupled nonlinear Schr?dinger-KdV equations

被引:2
作者
Huang, Yifei [1 ]
Peng, Gang [2 ]
Zhang, Gengen [3 ]
Zhang, Hong [4 ]
机构
[1] Guilin Univ Aerosp Technol, Sch Sci, Guilin 541004, Peoples R China
[2] Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Peoples R China
[3] Yunnan Univ, Sch Math & Stat, Kunming 650504, Peoples R China
[4] Natl Univ Def Technol, Coll Sci, Dept Math, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Schr?dinger-KdV equations; Structure-preserving method; Runge-Kutta method; Fourier pseudo-spectral method; HOMOTOPY PERTURBATION METHOD; GEOMETRIC INTEGRATION; SCHRODINGER; SCHEMES; INVARIANTS; EFFICIENT;
D O I
10.1016/j.matcom.2023.01.031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A novel class of high-order Runge-Kutta structure-preserving methods for the coupled nonlinear Schrodinger-KdV equations is proposed and analyzed. With the aid of the quadratic auxiliary variable, an equivalent system is obtained from the original problem. The Fourier pseudo-spectral method is employed in spatial discretization and the symplectic Runge-Kutta method is utilized for the resulting semi-discrete system to arrive at a high-order fully discrete scheme. Simultaneously, the conservation of the original multiple invariants for the schemes are rigorously proven. Numerical experiments are performed to verify the theoretical analysis. (c) 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:603 / 618
页数:16
相关论文
共 44 条
[1]   New applications of variational iteration method [J].
Abdou, MA ;
Soliman, AA .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 211 (1-2) :1-8
[2]   Comparison between the homotopy analysis method and homotopy perturbation method to solve coupled Schrodinger-KdV equation [J].
Alomari A.K. ;
Noorani M.S.M. ;
Nazar R. .
Journal of Applied Mathematics and Computing, 2009, 31 (1-2) :1-12
[3]   Convergence of a numerical scheme for a coupled Schrodinger-KdV system [J].
Amorim, Paulo ;
Figueira, Mario .
REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02) :409-426
[4]   DYNAMICS OF COUPLED SOLITONS [J].
APPERT, K ;
VACLAVIK, J .
PHYSICS OF FLUIDS, 1977, 20 (11) :1845-1849
[5]   Numerical studies on a novel split-step quadratic B-spline finite element method for the coupled Schrodinger-KdV equations [J].
Bai, Dongmei ;
Zhang, Luming .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) :1263-1273
[6]   The finite element method for the coupled Schrodinger-KdV equations [J].
Bai, Dongmei ;
Zhang, Luming .
PHYSICS LETTERS A, 2009, 373 (26) :2237-2244
[7]   Energy-conserving methods for the nonlinear Schrodinger equation [J].
Barletti, L. ;
Brugnano, L. ;
Frasca Caccia, Gianluca ;
Iavernaro, F. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 318 :3-18
[8]  
Brugnano L., 2010, J Numer Anal Ind Appl Math, V5, P17
[9]  
Brugnano L, 2016, Monographs and Research Notes in Mathematics, V13, P1
[10]   Multiple invariants conserving Runge-Kutta type methods for Hamiltonian problems [J].
Brugnano, Luigi ;
Sun, Yajuan .
NUMERICAL ALGORITHMS, 2014, 65 (03) :611-632