Cubic-wavelength mode volume photonic crystal nanobeam cavities in a monolithic CMOS platform

被引:5
作者
Al Qubaisi, Kenaish [1 ]
Schiller, Mark [2 ]
Zhang, Bohan [1 ]
Onural, Deniz [1 ]
Naughton, Michael J. [2 ]
Popovic, Milos A. [1 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[2] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
基金
美国国家科学基金会;
关键词
CMOS integrated circuits - Nanowires - Near field scanning optical microscopy - Photonic crystals - Photonic devices - Photonic integration technology - Silicon on insulator technology;
D O I
10.1364/OL.481483
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on the design, fabrication, and experimental characterization of photonic crystal (PhC) nanobeam cav-ities with the smallest footprint, largest intrinsic quality factor, and smallest mode volume to be demonstrated to date in a monolithic CMOS platform. Two types of cavi-ties were designed, with opposite spatial mode symmetries. The opposite mode symmetry, combined with evanescent coupling, allows the nanobeam cavities to be used in reflec-tionless topologies, desirable in complex photonic integrated circuits (PICs). The devices were implemented and fabri-cated in a 45 nm monolithic electronics-photonics CMOS platform optimized for silicon photonics (GlobalFoundries 45CLO) and do not require any post-processing. Quality fac-tors exceeding 100 000 were measured for both devices, the highest, to the best of our knowledge, among fully cladded PhC nanobeam cavities in any silicon-on-insulator (SOI) platform. Additionally, the ability of the cavities to confine light into small mode volumes, of the order of (lambda/n)3, was confirmed experimentally using near-field scanning optical microscopy (NSOM). These types of cavities are an impor-tant step toward realizing ultra-low energy active devices required for the next generation of integrated optical links beyond the current microring resonator-based links and other CMOS PICs. (c) 2023 Optica Publishing Group
引用
收藏
页码:1024 / 1027
页数:4
相关论文
共 15 条
[1]   One-dimensional parabolic-beam photonic crystal laser [J].
Ahn, Byeong-Hyeon ;
Kang, Ju-Hyung ;
Kim, Myung-Ki ;
Song, Jung-Hwan ;
Min, Bumki ;
Kim, Ki-Soo ;
Lee, Yong-Hee .
OPTICS EXPRESS, 2010, 18 (06) :5654-5660
[2]  
Al Qubaisi K, 2021, CONF LASER ELECTR
[3]   Reflectionless dual standing-wave microcavity resonator units for photonic integrated circuits [J].
Al Qubaisi, Kenaish ;
Popovic, Milos A. .
OPTICS EXPRESS, 2020, 28 (24) :35986-35996
[4]  
Cabanillas J. M. F., 2021, OPTICAL FIBER COMMUN
[5]   Realizing high transmission intensity in photonic crystal nanobeams using a side-coupling waveguide [J].
Halimi, Sam, I ;
Hu, Shuren ;
Afzal, Francis O. ;
Weiss, Sharon M. .
OPTICS LETTERS, 2018, 43 (17) :4260-4263
[6]   Controlling the mode profile of photonic crystal nanobeam cavities with mix-and-match unit cells [J].
Halimi, Sami, I ;
Fu, Zhongyuan ;
Afzal, Francis O. ;
Allen, Joshua A. ;
Hu, Shuren ;
Weiss, Sharon M. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (11) :3401-3406
[7]   Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity [J].
Lalouat, Loic ;
Cluzel, Benoit ;
de Fornel, Frederique ;
Velha, Philippe ;
Lalanne, Philippe ;
Peyrade, David ;
Picard, Emmanuel ;
Charvolin, Thomas ;
Hadji, Emmanuel .
APPLIED PHYSICS LETTERS, 2008, 92 (11)
[8]   Photonic Crystal Nanobeam Cavity With a High Experimental Q Factor Exceeding Two Million Based on Machine Learning [J].
Liu, Li ;
Ma, Chenggong ;
Ye, Mengyuan ;
Yu, Zhihua ;
Xue, Wei ;
Hu, Zhihao ;
Li, Jian .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (21) :7150-7158
[9]  
Popovic M, 2008, THESIS MIT
[10]   Photonic Crystal Microcavities in a Microelectronics 45-nm SOI CMOS Technology [J].
Poulton, Christopher Vincent ;
Zeng, Xiaoge ;
Wade, Mark T. ;
Shainline, Jeffrey Michael ;
Orcutt, Jason S. ;
Popovic, Milos A. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2015, 27 (06) :665-668