High-order Coverage of Smoothed Bayesian Bootstrap Intervals for Population Quantiles

被引:0
作者
Kaplan, David M. [1 ,2 ]
Hofmann, Lonnie [1 ]
机构
[1] Univ Missouri, Columbia, MO USA
[2] Univ Missouri, Dept Econ, Columbia, MO 65212 USA
关键词
continuity correction; fractional order statistics; CONFIDENCE-INTERVALS;
D O I
10.17713/ajs.v52i2.1385
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We characterize the high-order coverage accuracy of smoothed and unsmoothed Bayesian bootstrap confidence intervals for population quantiles. Although the original (Rubin 1981) unsmoothed intervals have the same O(n-(1/2)) coverage error as the standard empirical bootstrap, the smoothed Bayesian bootstrap of Banks (1988) has much smaller O(n-(3/2)[log(n)](3)) coverage error and is exact in special cases, without requiring any smoothing parameter. It automatically removes an error term of order 1/n that other approaches need to explicitly correct for. This motivates further study of the smoothed Bayesian bootstrap in more complex settings and models.
引用
收藏
页码:22 / 44
页数:23
相关论文
共 18 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F, P916
[2]  
BANKS DL, 1988, BIOMETRIKA, V75, P673
[3]  
BERAN R, 1993, J ROY STAT SOC B MET, V55, P643
[4]  
David H A., 2003, Order Statistics, V1st, DOI DOI 10.1002/0471722162
[5]  
Efron B., 1982, The Jackknife, the Bootstrap and Other Resampling Plans, DOI [10.1137/1.9781611970319.fm, DOI 10.1137/1.9781611970319.FM, 10.1137/1.9781611970319, DOI 10.1137/1.9781611970319]
[6]   COVERAGE PROBABILITIES OF BOOTSTRAP-CONFIDENCE INTERVALS FOR QUANTILES [J].
FALK, M ;
KAUFMANN, E .
ANNALS OF STATISTICS, 1991, 19 (01) :485-495
[7]   BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1973, 1 (02) :209-230
[8]   Comparing distributions by multiple testing across quantiles or CDF values [J].
Goldman, Matt ;
Kaplan, David M. .
JOURNAL OF ECONOMETRICS, 2018, 206 (01) :143-166
[9]   Non-parametric inference on (conditional) quantile differences and interquantile ranges, using L-statistics [J].
Goldman, Matt ;
Kaplan, David M. .
ECONOMETRICS JOURNAL, 2018, 21 (02) :136-169
[10]   Fractional order statistic approximation for nonparametric conditional quantile inference [J].
Goldman, Matt ;
Kaplan, David M. .
JOURNAL OF ECONOMETRICS, 2017, 196 (02) :331-346