DSTVis: toward better interactive visual analysis of Drones' spatio-temporal data

被引:1
|
作者
Chen, Fengxin [1 ,3 ,4 ]
Yu, Ye [1 ,3 ,4 ]
Ni, Liangliang [1 ,4 ,5 ]
Zhang, Zhenya [2 ]
Lu, Qiang [1 ,3 ,4 ]
机构
[1] Hefei Univ Technol, Key Lab Knowledge Engn Big Data, Minist Educ, Hefei 230009, Anhui, Peoples R China
[2] Anhui Jianzhu Univ, Anhui Key Lab Intelligent Bldg & Bldg Energy Conse, Hefei 230601, Anhui, Peoples R China
[3] Hefei Univ Technol, Sch Comp Sci & Informat, Hefei 230009, Anhui, Peoples R China
[4] Hefei Univ Technol, Intelligent Interconnected Syst Lab Anhui Prov, Hefei 230009, Anhui, Peoples R China
[5] Hefei Univ Technol, Sch Software, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual analysis; Spatio-temporal data; Interaction design; Drones; VISUALIZATION; ANALYTICS; FRAMEWORK; MOVEMENT;
D O I
10.1007/s12650-024-00982-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Maintaining the normal flight of drones is crucial for drone operators. Analyzing the operation status of drones and adjusting flight parameters are essential to achieve this goal. However, as drone technology continues to evolve, the volume and complexity of spatio-temporal data related to drone flight status have grown exponentially. The complexity of this data poses a challenge to effective visualization, which can impact operators' analysis and decision-making. Currently, there is limited research on identifying flight attributes from a large collection of drone time series data. Two challenges were identified: (1) visual clutter from spatio-temporal data; (2) effective integration of time and space properties. By collaborating with domain experts, we addressed two challenges with DSTVis, a novel interactive system for operators to visually analyze spatio-temporal data of drones. For Challenge 1, we designed dynamic interactive views by abstracting and stratifying spatio-temporal data, enabling effective exploration of large amounts of data. For Challenge 2, a two-dimensional map is utilized to integrate time information and assist users in comprehending the spatio-temporal properties. The effectiveness of the system is evaluated with a usage scenario on a real-world historical dataset and received positive feedback from experts.
引用
收藏
页码:623 / 638
页数:16
相关论文
共 50 条
  • [1] Visual analysis of traffic data via spatio-temporal graphs and interactive topic modeling
    Liu, Liyan
    Zhan, Hongxin
    Liu, Jiaxin
    Man, Jiaju
    JOURNAL OF VISUALIZATION, 2019, 22 (01) : 141 - 160
  • [2] A Characterization of Interactive Visual Data Stories With a Spatio-Temporal Context
    Mayer, Benedikt
    Steinhauer, Nastasja
    Preim, Bernhard
    Meuschke, Monique
    COMPUTER GRAPHICS FORUM, 2023, 42 (06)
  • [3] Visual analysis of traffic data via spatio-temporal graphs and interactive topic modeling
    Liyan Liu
    Hongxin Zhan
    Jiaxin Liu
    Jiaju Man
    Journal of Visualization, 2019, 22 : 141 - 160
  • [4] VAUD: A Visual Analysis Approach for Exploring Spatio-Temporal Urban Data
    Chen, Wei
    Huang, Zhaosong
    Wu, Feiran
    Zhu, Minfeng
    Guan, Huihua
    Maciejewski, Ross
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (09) : 2636 - 2648
  • [5] Visual Analysis of Spatio-Temporal Data: Applications in Weather Forecasting
    Diehl, A.
    Pelorosso, L.
    Delrieux, C.
    Saulo, C.
    Ruiz, J.
    Groeller, M. E.
    Bruckner, S.
    COMPUTER GRAPHICS FORUM, 2015, 34 (03) : 381 - 390
  • [6] EcoVis: visual analysis of industrial-level spatio-temporal correlations in electricity consumption
    Xiao, Yong
    Zheng, Kaihong
    Lonapalawong, Supaporn
    Lu, Wenjie
    Chen, Zexian
    Qian, Bin
    Zhang, Tianye
    Wang, Xin
    Chen, Wei
    FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (02)
  • [7] Spatio-temporal analysis of industrial composition with IVIID: an interactive visual analytics interface for industrial diversity
    Mack, Elizabeth A.
    Zhang, Yifan
    Rey, Sergio
    Maciejewski, Ross
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2014, 16 (02) : 183 - 209
  • [8] Visual Analysis of Spatio-temporal Phenomena with 1D Projections
    Franke, M.
    Martin, H.
    Koch, S.
    Kurzhals, K.
    COMPUTER GRAPHICS FORUM, 2021, 40 (03) : 335 - 347
  • [9] Spatio-Temporal Data Augmentation for Visual Surveillance
    Kim, Jae-Yeul
    Ha, Jong-Eun
    IEEE ACCESS, 2021, 9 : 165014 - 165033
  • [10] Visual analysis of air pollution spatio-temporal patterns
    Li, Jiayang
    Bi, Chongke
    VISUAL COMPUTER, 2023, 39 (08) : 3715 - 3726