Improvement of 3D printing polymer simulations considering converting G-code to Abaqus

被引:1
|
作者
Hachimi, Taoufik [1 ]
Majid, Fatima [1 ]
Zekriti, Najat [1 ]
Rhanim, Rajaa [2 ]
Rhanim, Hassan [1 ]
机构
[1] Chouaib Doukkali Univ, Fac Sci, Lab Nucl Atom Mol Mech & Energet Phys, St Fac, El Jadida 24000, Morocco
[2] Moulay Ismail Univ, Fac Sci, Lab Study Adv Mat & Applicat, St Zitoune, Meknes 11201, Morocco
关键词
Abaqus script; G-code; Additive manufacturing; FDM process; Numerical finite element simulation; SPECIMENS;
D O I
10.1007/s00170-024-13300-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a new approach to simulate mechanical testing for 3D printing materials with the FDM process. A developed tool to convert G-code files used in the FDM process into Abaqus scripts was used in the engineering simulation package, allowing engineers and manufacturers to import the real geometries of samples for numerical simulations in terms of optimization of 3D manufacturing processes and improve their numerical manufacturing procedures, leading to faster and higher quality production. A comparative study was made between the geometries generated with the slicer software and those generated by our tool, confirming the tool's accuracy in generating the exact geometries. Then, a tensile test simulation was also performed on a standard printed specimen (ISO527-2) with a single layer and multiple orientations (0 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}, 45 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}, and 90 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}). Showing that the simulation results and the experiment are consistent, a correlation exceeding 90% is demonstrated. It offers an improved simulation outcome.
引用
收藏
页码:5193 / 5208
页数:16
相关论文
共 50 条
  • [41] A comprehensive review on 3D printing advancements in polymer composites: technologies, materials, and applications
    Jagadeesh, Praveenkumara
    Puttegowda, Madhu
    Rangappa, Sanjay Mavinkere
    Alexey, Karfidov
    Gorbatyuk, Sergey
    Khan, Anish
    Doddamani, Mrityunjay
    Siengchin, Suchart
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 121 (1-2) : 127 - 169
  • [42] Towards Circular Economy: Integrating Polymer Recycling and 3D Printing for Economic Regeneration
    Rashi Punia
    Balasubramanian Kandasubramanian
    Polytechnica, 2025, 8 (1):
  • [43] Particle-Reinforced Polymer Matrix Composites (PMC) Fabricated by 3D Printing
    Abd-Elaziem, Walaa
    Khedr, Mahmoud
    Abd-Elaziem, Abd-Elrahim
    Allah, Mahmoud M. Awd
    Mousa, Ahmed A.
    Yehia, Hossam M.
    Daoush, Walid M.
    El-Baky, Marwa A. Abd
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2023, 33 (12) : 3732 - 3749
  • [44] Fused filament 3D printing of ionic polymer-metal composites (IPMCs)
    Carrico, James D.
    Traeden, Nicklaus W.
    Aureli, Matteo
    Leang, Kam K.
    SMART MATERIALS AND STRUCTURES, 2015, 24 (12)
  • [45] Dual-curing polymer systems for photo-curing 3D printing
    Gao, Weizi
    Guo, Yunlong
    Cui, Jingjing
    Liang, Chen
    Lu, Zhe
    Feng, Shiwei
    Sun, Yongding
    Xia, Qixing
    Zhang, Biao
    ADDITIVE MANUFACTURING, 2024, 85
  • [46] Photocurable High-Energy Polymer-Based Materials for 3D Printing
    Tkachev, Dmitrii
    Dubkova, Yana
    Zhukov, Alexander
    Verkhoshanskiy, Yanis
    Vorozhtsov, Alexander
    Zhukov, Ilya
    POLYMERS, 2023, 15 (21)
  • [47] Direct Stereolithographic 3D Printing of Microfluidic Structures on Polymer Substrates for Printed Electronics
    Zips, Sabine
    Wenzel, Ole Jonas
    Rinklin, Philipp
    Grob, Leroy
    Terkan, Korkut
    Adly, Nouran Yehia
    Weiss, Lennart
    Wolfrum, Bernhard
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (03)
  • [48] Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications
    Ryan, Kirstie R.
    Down, Michael P.
    Hurst, Nicholas J.
    Keefe, Edmund M.
    Banks, Craig E.
    ESCIENCE, 2022, 2 (04): : 365 - 381
  • [49] Physical Simulation of Brittle Rocks by 3D Printing Techniques Considering Cracking Behaviour and Permeability
    Zhao, Xiaobao
    Liu, Yang
    Zou, Chunjiang
    He, Lei
    Che, Ping
    Li, Jianchun
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [50] Polymer-Nickel Composite Filaments for 3D Printing of Open Porous Materials
    Mackiewicz, Ewelina
    Wejrzanowski, Tomasz
    Adamczyk-Cieslak, Boguslawa
    Oliver, Graeme J.
    MATERIALS, 2022, 15 (04)