Improvement of 3D printing polymer simulations considering converting G-code to Abaqus

被引:1
|
作者
Hachimi, Taoufik [1 ]
Majid, Fatima [1 ]
Zekriti, Najat [1 ]
Rhanim, Rajaa [2 ]
Rhanim, Hassan [1 ]
机构
[1] Chouaib Doukkali Univ, Fac Sci, Lab Nucl Atom Mol Mech & Energet Phys, St Fac, El Jadida 24000, Morocco
[2] Moulay Ismail Univ, Fac Sci, Lab Study Adv Mat & Applicat, St Zitoune, Meknes 11201, Morocco
关键词
Abaqus script; G-code; Additive manufacturing; FDM process; Numerical finite element simulation; SPECIMENS;
D O I
10.1007/s00170-024-13300-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a new approach to simulate mechanical testing for 3D printing materials with the FDM process. A developed tool to convert G-code files used in the FDM process into Abaqus scripts was used in the engineering simulation package, allowing engineers and manufacturers to import the real geometries of samples for numerical simulations in terms of optimization of 3D manufacturing processes and improve their numerical manufacturing procedures, leading to faster and higher quality production. A comparative study was made between the geometries generated with the slicer software and those generated by our tool, confirming the tool's accuracy in generating the exact geometries. Then, a tensile test simulation was also performed on a standard printed specimen (ISO527-2) with a single layer and multiple orientations (0 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}, 45 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}, and 90 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}). Showing that the simulation results and the experiment are consistent, a correlation exceeding 90% is demonstrated. It offers an improved simulation outcome.
引用
收藏
页码:5193 / 5208
页数:16
相关论文
共 50 条
  • [31] Tuning of shape memory polymer properties by controlling 3D printing strategy
    Koualiarella, Alnto
    Arvanitidis, Apostolos
    Argyros, Apostolos
    Kousiatza, Charoula
    Karakalas, Anargyros
    Lagoudas, Dimitris
    Michailidis, Nikolaos
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2020, 69 (01) : 213 - 216
  • [32] 3D Extrusion and Stereolithography Printing Methods for Producing Multifunctional Polymer Composites
    Tamburri, Emanuela
    Montaina, Luca
    Pescosolido, Francesca
    Carcione, Rocco
    Battistoni, Silvia
    MACROMOLECULAR SYMPOSIA, 2024, 413 (04)
  • [33] Interpolation of tensile properties of polymer composite based on Polyjet 3D printing
    Mayyas, Mohammad
    PROGRESS IN ADDITIVE MANUFACTURING, 2021, 6 (04) : 607 - 615
  • [34] Technological Evaluation of Algae-Based Fillers for Polymer 3D Printing
    Fiedler, Maximilian
    Schoemig, Oliver
    Fischer, Fabian
    Droeder, Klaus
    SUSTAINABILITY, 2023, 15 (05)
  • [35] ENHANCING CARBON FIBER REINFORCED POLYMER COMPOSITES BY 3D PRINTING OPTIMIZATION
    Liu, Xingyu
    Billings, Christopher
    Sherwood, Benjamin
    Hall, Joshua
    Nimmo, Caylin
    Liu, Yingtao
    PROCEEDINGS OF ASME 2024 AEROSPACE STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE, SSDM2024, 2024,
  • [36] Interpolation of tensile properties of polymer composite based on Polyjet 3D printing
    Mohammad Mayyas
    Progress in Additive Manufacturing, 2021, 6 : 607 - 615
  • [37] A code-based method for carbon emission prediction of 3D printing: A case study on the fused deposition modeling (FDM) 3D printing and comparison with conventional approach
    Yu, Shujun
    Liu, Heng
    Zhao, Gang
    Zhang, Hua
    Hou, Feng
    Xu, Kuankuan
    JOURNAL OF CLEANER PRODUCTION, 2024, 484
  • [38] Advances and prospective applications of 3D food printing for health improvement and personalized nutrition
    Escalante-Aburto, Anayansi
    Trujillo-de Santiago, Grissel
    Alvarez, Mario M.
    Chuck-Hernandez, Cristina
    COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 2021, 20 (06) : 5722 - 5741
  • [39] A comprehensive review on 3D printing advancements in polymer composites: technologies, materials, and applications
    Praveenkumara Jagadeesh
    Madhu Puttegowda
    Sanjay Mavinkere Rangappa
    Karfidov Alexey
    Sergey Gorbatyuk
    Anish Khan
    Mrityunjay Doddamani
    Suchart Siengchin
    The International Journal of Advanced Manufacturing Technology, 2022, 121 : 127 - 169
  • [40] Particle-Reinforced Polymer Matrix Composites (PMC) Fabricated by 3D Printing
    Walaa Abd-Elaziem
    Mahmoud Khedr
    Abd-Elrahim Abd-Elaziem
    Mahmoud M. Awd Allah
    Ahmed A. Mousa
    Hossam M. Yehia
    Walid M. Daoush
    Marwa A. Abd El-Baky
    Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33 : 3732 - 3749