Improvement of 3D printing polymer simulations considering converting G-code to Abaqus

被引:1
|
作者
Hachimi, Taoufik [1 ]
Majid, Fatima [1 ]
Zekriti, Najat [1 ]
Rhanim, Rajaa [2 ]
Rhanim, Hassan [1 ]
机构
[1] Chouaib Doukkali Univ, Fac Sci, Lab Nucl Atom Mol Mech & Energet Phys, St Fac, El Jadida 24000, Morocco
[2] Moulay Ismail Univ, Fac Sci, Lab Study Adv Mat & Applicat, St Zitoune, Meknes 11201, Morocco
关键词
Abaqus script; G-code; Additive manufacturing; FDM process; Numerical finite element simulation; SPECIMENS;
D O I
10.1007/s00170-024-13300-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a new approach to simulate mechanical testing for 3D printing materials with the FDM process. A developed tool to convert G-code files used in the FDM process into Abaqus scripts was used in the engineering simulation package, allowing engineers and manufacturers to import the real geometries of samples for numerical simulations in terms of optimization of 3D manufacturing processes and improve their numerical manufacturing procedures, leading to faster and higher quality production. A comparative study was made between the geometries generated with the slicer software and those generated by our tool, confirming the tool's accuracy in generating the exact geometries. Then, a tensile test simulation was also performed on a standard printed specimen (ISO527-2) with a single layer and multiple orientations (0 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}, 45 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}, and 90 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}). Showing that the simulation results and the experiment are consistent, a correlation exceeding 90% is demonstrated. It offers an improved simulation outcome.
引用
收藏
页码:5193 / 5208
页数:16
相关论文
共 50 条
  • [21] Exploiting the combination of 3D polymer printing and inkjet Ag-nanoparticle printing for advanced packaging
    Krivec, Matic
    Roshanghias, Ali
    Abram, Arze
    Binder, Alfred
    MICROELECTRONIC ENGINEERING, 2017, 176 : 1 - 5
  • [22] The influence of 3D printing process parameters on the mechanical performance of PLA polymer and its correlation with hardness
    Hanon, Muammel M.
    Dobos, Jozsef
    Zsidai, Laszlo
    10TH CIRP SPONSORED CONFERENCE ON DIGITAL ENTERPRISE TECHNOLOGIES (DET 2020) - DIGITAL TECHNOLOGIES AS ENABLERS OF INDUSTRIAL COMPETITIVENESS AND SUSTAINABILITY, 2021, 54 : 244 - 249
  • [23] Rheological characterization of polymer/ceramic blends for 3D printing of bone scaffolds
    Huang, Boyang
    Bartlo, Paulo Jorge
    POLYMER TESTING, 2018, 68 : 365 - 378
  • [24] Strength and its variability in 3D printing of polymer composites with continuous fibers
    Parker, M.
    Ezeokeke, N.
    Matsuzaki, R.
    Arola, D.
    MATERIALS & DESIGN, 2023, 225
  • [25] 3D printing of polymer-derived SiOC with hierarchical and tunable porosity
    Huang, Kai
    Elsayed, Hamada
    Franchin, Giorgia
    Colombo, Paolo
    ADDITIVE MANUFACTURING, 2020, 36 (36)
  • [26] 3D printing to enable multifunctionality in polymer-based composites: A review
    Bekas, D. G.
    Hou, Y.
    Liu, Y.
    Panesar, A.
    COMPOSITES PART B-ENGINEERING, 2019, 179
  • [27] 3D Printing of polymer composites with material jetting: Mechanical and fractographic analysis
    Tee, Yun Lu
    Tran, Phuong
    Leary, Martin
    Pille, Philip
    Brandt, Milan
    ADDITIVE MANUFACTURING, 2020, 36 (36)
  • [28] 3D printing for the design and fabrication of polymer-based gradient scaffolds
    Bracaglia, Laura G.
    Smith, Brandon T.
    Watson, Emma
    Arumugasaamy, Navein
    Mikos, Antonios G.
    Fisher, John P.
    ACTA BIOMATERIALIA, 2017, 56 : 3 - 13
  • [29] Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling
    Mora, A.
    Verma, P.
    Kumar, S.
    COMPOSITES PART B-ENGINEERING, 2020, 183 (183)
  • [30] Flame retardant polymer materials: An update and the future for 3D printing developments
    Vahabi, Henri
    Laoutid, Fouad
    Mehrpouya, Mehrshad
    Saeb, Mohammad Reza
    Dubois, Philippe
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2021, 144