Boundedness of metaplectic Toeplitz operators and Weyl symbols

被引:1
作者
Xiong, Haoren [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Toeplitz operator; Weyl symbol; Complex FIOs; Canonical transformation;
D O I
10.1016/j.jfa.2023.110294
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Toeplitz operators on the Bargmann space, whose Toeplitz symbols are exponentials of complex inhomogeneous quadratic polynomials. Extending a result by Coburn- Hitrik-Sjostrand [7], we show that the boundedness of such Toeplitz operators implies the boundedness of the corresponding Weyl symbols, thus completing the proof of the Berger- Coburn conjecture in this case. We also show that a Toeplitz operator is compact precisely when its Weyl symbol vanishes at infinity in this case. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 12 条
[1]   Heat flow, BMO, and the compactness of Toeplitz operators [J].
Bauer, W. ;
Coburn, L. A. ;
Isralowitz, J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (01) :57-78
[2]   HEAT-FLOW AND BEREZIN-TOEPLITZ ESTIMATES [J].
BERGER, CA ;
COBURN, LA .
AMERICAN JOURNAL OF MATHEMATICS, 1994, 116 (03) :563-590
[3]   Quadratic PT-symmetric operators with real spectrum and similarity to self-adjoint operators [J].
Caliceti, Emanuela ;
Graffi, Sandro ;
Hitrik, Michael ;
Sjoestrand, Johannes .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)
[4]  
Coburn L., 2019, Handbook of analytic operator theory, P1
[5]  
Coburn L.A., 2023, arXiv
[6]   Weyl symbols and boundedness of Toeplitz operators [J].
Coburn, Lewis ;
Hitrik, Michael ;
Sjostrand, Johannes ;
White, Francis .
MATHEMATICAL RESEARCH LETTERS, 2021, 28 (03) :681-696
[7]  
Coburn LA, 2019, PURE APPL ANAL, V1, P327, DOI [10.2140/paa.2019.1.327, 10.2140/paa.2019.1.327.888, DOI 10.2140/PAA.2019.1.327.888]
[8]  
Hitrik M., 2018, Springer Proceedings in Mathematics Statistics, P483, DOI 10.1007/978-3-030-01588-6_10
[9]  
Sjöstrand J, 2007, ANN I FOURIER, V57, P2095
[10]  
SJOSTRAND J, 1982, ASTERISQUE, P1