A novel EEG-based graph convolution network for depression detection: Incorporating secondary subject partitioning and attention mechanism

被引:17
|
作者
Zhang, Zhongyi [1 ]
Meng, Qinghao [1 ]
Jin, Licheng [1 ]
Wang, Hanguang [1 ]
Hou, Huirang [1 ]
机构
[1] Tianjin Univ, Inst Robot & Autonomous Syst, Sch Elect & Informat Engn, Tianjin Key Lab Proc Measurement & Control, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
EEG; Depression detection; Graph convolution network (GCN); Attention mechanism; Domain generalization; CHANNEL SELECTION; SLEEP;
D O I
10.1016/j.eswa.2023.122356
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electroencephalography (EEG) is capable of capturing the evocative neural information within the brain. As a result, it has been increasingly used for identifying neurological disorders, such as depression. In recent years, researchers have proposed deep-learning models for EEG-based depression detection and achieved good results. However, there are still some limitations in these models, as the varying importance across different EEG channels and the varying importance of different features within the same channel for each subject have not been adequately addressed. Furthermore, the variations in EEG data distributions among different subjects have not been fully considered, thereby compromising the universality of the model in cross-subject tasks. To address the aforementioned problems, we propose a model with a secondary subject partitioning and attention mechanism based on a graph convolution network (GCN). First, we present an attention module that can simultaneously concentrate on multiple channels with different features within each channel. Second, domain generalization based on adversarial training is added to the model, and a secondary subject partitioning method is proposed to group subjects with similar data distributions into the same domain with a shared domain label. This effectively reduces the number of domain labels and increases the data volume in each domain, thereby enhancing the domain generalization performance. Finally, in the depression recognition task, the improved domain generalization and attention modules collaborate to capture subject-invariant features. Prediction accuracies of 92.87% and 83.17% are respectively achieved on two public datasets, outperforming the state-of-the-art baseline models. Moreover, extensive ablation experiments further validate the effectiveness of each module in the model.
引用
收藏
页数:13
相关论文
共 48 条
  • [21] STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition
    Li, Jingcong
    Pan, Weijian
    Huang, Haiyun
    Pan, Jiahui
    Wang, Fei
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [22] A cross-attention swin transformer network for EEG-based subject-independent cognitive load assessment
    Li, Zhongrui
    Zhang, Rongkai
    Tong, Li
    Zeng, Ying
    Gao, Yuanlong
    Yang, Kai
    Yan, Bin
    COGNITIVE NEURODYNAMICS, 2024, : 3805 - 3819
  • [23] EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network
    Liu, Shuaiqi
    Wang, Zeyao
    An, Yanling
    Zhao, Jie
    Zhao, Yingying
    Zhang, Yu-Dong
    KNOWLEDGE-BASED SYSTEMS, 2023, 265
  • [24] A neuroscience-inspired spiking neural network for EEG-based auditory spatial attention detection
    Faghihi, Faramarz
    Cai, Siqi
    Moustafa, Ahmed A.
    NEURAL NETWORKS, 2022, 152 : 555 - 565
  • [25] EEG-Based Parkinson's Disease Recognition via Attention-Based Sparse Graph Convolutional Neural Network
    Chang, Hongli
    Liu, Bo
    Zong, Yuan
    Lu, Cheng
    Wang, Xuenan
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (11) : 5216 - 5224
  • [26] Dynamic graph convolution and mixed attention mechanism based ship point cloud target detection
    Zhou, Yi
    Zhang, Wenkai
    Min, Yuwei
    Yang, Jianfeng
    Yu, Tianqi
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (04)
  • [27] EEG-Based Emotion Classification Using Long Short-Term Memory Network with Attention Mechanism
    Kim, Youmin
    Choi, Ahyoung
    SENSORS, 2020, 20 (23) : 1 - 22
  • [28] Relation extraction for manufacturing knowledge graphs based on feature fusion of attention mechanism and graph convolution network
    Du, Kaze
    Yang, Bo
    Wang, Shilong
    Chang, Yongsheng
    Li, Song
    Yi, Gang
    KNOWLEDGE-BASED SYSTEMS, 2022, 255
  • [29] STSNet: a novel spatio-temporal-spectral network for subject-independent EEG-based emotion recognition
    Rui Li
    Chao Ren
    Sipo Zhang
    Yikun Yang
    Qiqi Zhao
    Kechen Hou
    Wenjie Yuan
    Xiaowei Zhang
    Bin Hu
    Health Information Science and Systems, 11
  • [30] STSNet: a novel spatio-temporal-spectral network for subject-independent EEG-based emotion recognition
    Li, Rui
    Ren, Chao
    Zhang, Sipo
    Yang, Yikun
    Zhao, Qiqi
    Hou, Kechen
    Yuan, Wenjie
    Zhang, Xiaowei
    Hu, Bin
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2023, 11 (01)