Bidirectional redox catalyst with rambutan-like structure for advanced lithium-sulfur battery

被引:25
作者
Zhao, Chongchong [1 ,2 ]
Yang, Yi [2 ,4 ]
Liu, Yanxia [2 ,3 ]
Sun, Zixu [4 ]
Zhang, Tao [2 ]
Gao, Zhe [2 ,3 ]
Huo, Feng [2 ,3 ,5 ]
Zhang, Yatao [1 ]
机构
[1] Zhengzhou Univ, Sch Chem Engn, Zhengzhou 450000, Peoples R China
[2] Zhengzhou Inst Emerging Ind Technol, Henan Key Lab Energy Storage Mat & Proc, Zhengzhou 450003, Peoples R China
[3] Chinese Acad Sci, Inst Proc Engn, Beijing Key Lab Ion Liquids Clean Proc, CAS Key Lab Green Proc & Engn,State Key Lab Multip, Beijing 100190, Peoples R China
[4] Henan Univ, Sch Mat Sci & Engn, Key Lab Special Funct Mat, Minist Educ, Kaifeng 475004, Peoples R China
[5] Chinese Acad Sci, Inst Proc Engn, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Pd nanoparticles; Catalytic polysulfide conversion; Li -S batteries; Rambutan-like structure; Hollow sphere; COMPOSITES; PD;
D O I
10.1016/j.apsusc.2023.158736
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lithium polysulfide (LiPSs) shuttle effect and sluggish conversion kinetics hinder the commercial viability of lithium-sulfur (Li-S) batteries. To improve the properties of Li-S batteries, it is imperative to establish efficient pathways for Li-ions transmission by constructing conductivity channels of high quality, and to expedite the conversion kinetics of LiPSs by employing catalysts of exceptional activity. In this study, we synthesized a spherical superstructure of metal-organic framework nanorods (SS-MOFNR) using a self-assembly strategy with zinc-metal-organic framework (Zn-MOF) nanoparticles, followed by carbonization to obtain the spherical superstructure of carbon nanorods (SS-CNR). Subsequently, palladium nanoparticles were synthesized through the reduction and uniformly dispersed onto SS-CNR. The hollow porous structure facilitates the efficient utilization of sulfur and ensures the rapid diffusion of Li-ions. Additionally, Pd nanoparticles exhibit significant catalytic activity, effectively adsorbing LiPSs and bidirectional catalytic conversion of sulfur species, thereby effectively suppressing the shuttle effect of LiPSs. Therefore S/Pd@SS-CNR electrode demonstrates commendable electrochemical efficacy, as evidenced by its initial specific capacity of 1627.7 mAh g-1 at 0.1C and maintaining a specific capacity of 766.2 mAh g-1 even after 600 cycles at 0.5C. Moreover, it exhibits favorable cycle stability at 2C, retaining a reversible capacity of 502.3 mAh g-1 after undergoing 1000 cycles.
引用
收藏
页数:9
相关论文
共 55 条
[1]   Achieving Uniform Li Plating/Stripping at Ultrahigh Currents and Capacities by Optimizing 3D Nucleation Sites and Li2Se-Enriched SEI [J].
Cao, Jiaqi ;
Xie, Yonghui ;
Yang, Yang ;
Wang, Xinghui ;
Li, Wangyang ;
Zhang, Qiaoli ;
Ma, Shun ;
Cheng, Shuying ;
Lu, Bingan .
ADVANCED SCIENCE, 2022, 9 (09)
[2]   Catalytic materials for lithium-sulfur batteries: mechanisms, design strategies and future perspective [J].
Chen, Hao ;
Wu, Zhenzhen ;
Zheng, Mengting ;
Liu, Tongchao ;
Yan, Cheng ;
Lu, Jun ;
Zhang, Shanqing .
MATERIALS TODAY, 2022, 52 :364-388
[3]   Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability [J].
Chen, Yi ;
Wang, Tianyi ;
Tian, Huajun ;
Su, Dawei ;
Zhang, Qiang ;
Wang, Guoxiu .
ADVANCED MATERIALS, 2021, 33 (29)
[4]   Cobalt embedded in porous carbon fiber membranes for high-performance lithium-sulfur batteries [J].
Chen, Yiyang ;
Xu, Peng ;
Liu, Qibin ;
Yuan, Dong ;
Long, Xiang ;
Zhu, Shaokuan .
CARBON, 2022, 187 :187-195
[5]   Flexible Hierarchical Co-Doped NiS2@CNF-CNT Electron Deficient Interlayer with Grass-Roots Structure for Li-S Batteries [J].
Dai, Xin ;
Lv, Guangjun ;
Wu, Zhen ;
Wang, Xu ;
Liu, Yan ;
Sun, Junjie ;
Wang, Qichao ;
Xiong, Xuyang ;
Liu, Yongning ;
Zhang, Chaofeng ;
Xin, Sen ;
Chen, Yuanzhen ;
Zhou, Tengfei .
ADVANCED ENERGY MATERIALS, 2023, 13 (21)
[6]   Co4N Nanosheet Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium-Sulfur Batteries [J].
Deng, Ding-Rong ;
Xue, Fei ;
Jia, Yue-Ju ;
Ye, Jian-Chuan ;
Bai, Cheng-Dong ;
Zheng, Ming-Sen ;
Dong, Quan-Feng .
ACS NANO, 2017, 11 (06) :6031-6039
[7]   All-Solid-State Thin-Film Lithium-Sulfur Batteries [J].
Deng, Renming ;
Ke, Bingyuan ;
Xie, Yonghui ;
Cheng, Shoulin ;
Zhang, Congcong ;
Zhang, Hong ;
Lu, Bingan ;
Wang, Xinghui .
NANO-MICRO LETTERS, 2023, 15 (01)
[8]   Anchoring and catalyzing polysulfides by rGO/MoS2/C modified separator in lithium-sulfur batteries [J].
Fan, Bin ;
He, Qian ;
Wei, Qingya ;
Liu, Wei ;
Zhou, Bigui ;
Zou, Yingping .
CARBON, 2023, 214
[9]   Recent Advances in Multifunctional Binders for High Sulfur Loading Lithium-Sulfur Batteries [J].
Guo, Rongnan ;
Yang, Yi ;
Huang, Xiang Long ;
Zhao, Chongchong ;
Hu, Binbin ;
Huo, Feng ;
Liu, Hua Kun ;
Sun, Bowen ;
Sun, Zixu ;
Dou, Shi Xue .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (01)
[10]   Optimizing Redox Reactions in Aprotic Lithium-Sulfur Batteries [J].
Hu, Anjun ;
Zhou, Mingjie ;
Lei, Tianyu ;
Hu, Yin ;
Du, Xinchuan ;
Gong, Chuanhui ;
Shu, Chaozhu ;
Long, Jianping ;
Zhu, Jun ;
Chen, Wei ;
Wang, Xianfu ;
Xiong, Jie .
ADVANCED ENERGY MATERIALS, 2020, 10 (42)