Model Driven Deep Unfolding Network for Extreme Low-Light Image Enhancement and Denoising

被引:0
|
作者
Cui, Shuang [1 ,2 ]
Xu, Fanjiang [1 ]
Tang, Xiongxin [1 ]
Zheng, Quan [1 ]
机构
[1] Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Low-light image enhancement; Deep unfolding network; Retinex model; Noise suppression; DYNAMIC HISTOGRAM EQUALIZATION; ILLUMINATION; ALGORITHM;
D O I
10.1109/IJCNN54540.2023.10191148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low visibility and severe noise are two main degradations in extreme low-light images. Nevertheless, existing lowlight image enhancement methods often fail to handle real lowlight images with strong noise. To address this issue, We propose a deep unfolding network based on the robust Retinex model with an additional noise term. In particular, we design an optimization model with implicit priors and employ the proximal gradient descent (PGD) technique to alternately solve three iterative sub-problems of the optimization model in a data-driven manner. The proposed method combines the interpretability of model-based methods with the speed and strong fitting ability of learning-based methods. In addition, we collect an extreme low-light sRGB image dataset (E-LOL) containing noisy low/normal-light image pairs. Extensive experimental results demonstrate that our method outperforms state-of-the-art methods in enhancing noisy low-light images and obtains better-exposed illumination, richer colors and textures.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Invertible network for unpaired low-light image enhancement
    Zhang, Jize
    Wang, Haolin
    Wu, Xiaohe
    Zuo, Wangmeng
    VISUAL COMPUTER, 2024, 40 (01): : 109 - 120
  • [42] DSE-Net: Deep simultaneous estimation network for low-light image enhancement
    Singh, Kavinder
    Parihar, Anil Singh
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 91
  • [43] FAST AND PHYSICALLY ENRICHED DEEP NETWORK FOR JOINT LOW-LIGHT ENHANCEMENT AND IMAGE DEBLURRING
    Hoang, Trung
    McElvain, Jon
    Monga, Vishal
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 3115 - 3119
  • [44] LLIEFORMER: A LOW-LIGHT IMAGE ENHANCEMENT TRANSFORMER NETWORK WITH A DEGRADED RESTORATION MODEL
    Yi, Xunpeng
    Wang, Yuxuan
    Zhao, Yizhen
    Yan, Jia
    Zhang, Weixia
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1195 - 1199
  • [45] Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement
    Yang, Wenhan
    Wang, Wenjing
    Huang, Haofeng
    Wang, Shiqi
    Liu, Jiaying
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 2072 - 2086
  • [46] LSR: Lightening super-resolution deep network for low-light image enhancement
    Rasheed, Muhammad Tahir
    Shi, Daming
    NEUROCOMPUTING, 2022, 505 : 263 - 275
  • [47] Illumination-guided semi-supervised network for low-light image enhancement jointly with denoising
    Ouyang, Jingzhi
    Huang, Keya
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (11) : 7821 - 7831
  • [48] DEANet: Decomposition Enhancement and Adjustment Network for Low-Light Image Enhancement
    Jiang, Yonglong
    Li, Liangliang
    Zhu, Jiahe
    Xue, Yuan
    Ma, Hongbing
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (04): : 743 - 753
  • [49] RetinexDIP: A Unified Deep Framework for Low-Light Image Enhancement
    Zhao, Zunjin
    Xiong, Bangshu
    Wang, Lei
    Ou, Qiaofeng
    Yu, Lei
    Kuang, Fa
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1076 - 1088
  • [50] New color channel driven physical lighting model for low-light image enhancement
    Kucuk, S.
    Severoglu, N.
    Demir, Y.
    Kaplan, N. H.
    DIGITAL SIGNAL PROCESSING, 2025, 156