Model Driven Deep Unfolding Network for Extreme Low-Light Image Enhancement and Denoising

被引:0
|
作者
Cui, Shuang [1 ,2 ]
Xu, Fanjiang [1 ]
Tang, Xiongxin [1 ]
Zheng, Quan [1 ]
机构
[1] Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Low-light image enhancement; Deep unfolding network; Retinex model; Noise suppression; DYNAMIC HISTOGRAM EQUALIZATION; ILLUMINATION; ALGORITHM;
D O I
10.1109/IJCNN54540.2023.10191148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low visibility and severe noise are two main degradations in extreme low-light images. Nevertheless, existing lowlight image enhancement methods often fail to handle real lowlight images with strong noise. To address this issue, We propose a deep unfolding network based on the robust Retinex model with an additional noise term. In particular, we design an optimization model with implicit priors and employ the proximal gradient descent (PGD) technique to alternately solve three iterative sub-problems of the optimization model in a data-driven manner. The proposed method combines the interpretability of model-based methods with the speed and strong fitting ability of learning-based methods. In addition, we collect an extreme low-light sRGB image dataset (E-LOL) containing noisy low/normal-light image pairs. Extensive experimental results demonstrate that our method outperforms state-of-the-art methods in enhancing noisy low-light images and obtains better-exposed illumination, richer colors and textures.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Learnability Enhancement for Low-Light Raw Image Denoising: A Data Perspective
    Feng, Hansen
    Wang, Lizhi
    Wang, Yuzhi
    Fan, Haoqiang
    Huang, Hua
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (01) : 370 - 387
  • [32] Denoising diffusion post-processing for low-light image enhancement
    Panagiotou, Savvas
    Bosman, Anna S.
    PATTERN RECOGNITION, 2024, 156
  • [33] Low-Light Image Enhancement Network Based on Recursive Network
    Liu, Fangjin
    Hua, Zhen
    Li, Jinjiang
    Fan, Linwei
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [34] Invertible network for unpaired low-light image enhancement
    Jize Zhang
    Haolin Wang
    Xiaohe Wu
    Wangmeng Zuo
    The Visual Computer, 2024, 40 : 109 - 120
  • [35] Generative adversarial network for low-light image enhancement
    Li, Fei
    Zheng, Jiangbin
    Zhang, Yuan-fang
    IET IMAGE PROCESSING, 2021, 15 (07) : 1542 - 1552
  • [36] Enhancing Low-Light Light Field Images With a Deep Compensation Unfolding Network
    Lyu, Xianqiang
    Hou, Junhui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4131 - 4144
  • [37] A Pipeline Neural Network for Low-Light Image Enhancement
    Guo, Yanhui
    Ke, Xue
    Ma, Jie
    Zhang, Jun
    IEEE ACCESS, 2019, 7 : 13737 - 13744
  • [38] Weight Uncertainty Network for Low-Light Image Enhancement
    Jin, Yutao
    Sun, Yue
    Chen, Xiaoyan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VIII, ICIC 2024, 2024, 14869 : 106 - 117
  • [39] Exposure difference network for low-light image enhancement
    Jiang, Shengqin
    Mei, Yongyue
    Wang, Peng
    Liu, Qingshan
    PATTERN RECOGNITION, 2024, 156
  • [40] Hierarchical guided network for low-light image enhancement
    Feng, Xiaomei
    Li, Jinjiang
    Fan, Hui
    IET IMAGE PROCESSING, 2021, 15 (13) : 3254 - 3266