Model Driven Deep Unfolding Network for Extreme Low-Light Image Enhancement and Denoising
被引:0
作者:
Cui, Shuang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
Cui, Shuang
[1
,2
]
Xu, Fanjiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
Xu, Fanjiang
[1
]
Tang, Xiongxin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
Tang, Xiongxin
[1
]
Zheng, Quan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
Zheng, Quan
[1
]
机构:
[1] Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源:
2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN
|
2023年
Low visibility and severe noise are two main degradations in extreme low-light images. Nevertheless, existing lowlight image enhancement methods often fail to handle real lowlight images with strong noise. To address this issue, We propose a deep unfolding network based on the robust Retinex model with an additional noise term. In particular, we design an optimization model with implicit priors and employ the proximal gradient descent (PGD) technique to alternately solve three iterative sub-problems of the optimization model in a data-driven manner. The proposed method combines the interpretability of model-based methods with the speed and strong fitting ability of learning-based methods. In addition, we collect an extreme low-light sRGB image dataset (E-LOL) containing noisy low/normal-light image pairs. Extensive experimental results demonstrate that our method outperforms state-of-the-art methods in enhancing noisy low-light images and obtains better-exposed illumination, richer colors and textures.
机构:
Hong Kong Polytech Univ, Dept Elect & Informat Engn, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Elect & Informat Engn, Hong Kong, Peoples R China
Wang, Li-Wen
Liu, Zhi-Song
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Elect & Informat Engn, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Elect & Informat Engn, Hong Kong, Peoples R China
Liu, Zhi-Song
Siu, Wan-Chi
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Elect & Informat Engn, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Elect & Informat Engn, Hong Kong, Peoples R China
Siu, Wan-Chi
Lun, Daniel P. K.
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Elect & Informat Engn, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Elect & Informat Engn, Hong Kong, Peoples R China
机构:
Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R ChinaXidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
Li, Xiaofang
Wang, Weiwei
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R ChinaXidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
Wang, Weiwei
Feng, Xiangchu
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R ChinaXidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
Feng, Xiangchu
Li, Min
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R ChinaXidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
机构:
Nanjing Vocat Univ Ind Technol, 1 North Yangshan Rd, Nanjing 210023, Peoples R China
Nanjing Univ Posts & Telecommun, 66 Xin Mofan RD, Nanjing 210003, Peoples R ChinaNanjing Vocat Univ Ind Technol, 1 North Yangshan Rd, Nanjing 210023, Peoples R China
Wu, Yahong
Liu, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Posts & Telecommun, 66 Xin Mofan RD, Nanjing 210003, Peoples R ChinaNanjing Vocat Univ Ind Technol, 1 North Yangshan Rd, Nanjing 210023, Peoples R China