Interlayer-modified pseudocapacitive ammonium vanadium with high reversibility and stability enabling high-performance aqueous zinc-ion battery

被引:10
|
作者
Zhang, Xi [1 ]
Sun, Xiaohong [1 ]
Zheng, Chunming [2 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Key Lab Adv Ceram & Machining Technol, Minist Educ, Tianjin 300072, Peoples R China
[2] Tiangong Univ, Sch Chem Engn & Technol, Tianjin Key Lab Green Chem Technol & Proc Engn, State Key Lab Separat Membrane & Membrane Proc, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
High reversibility; Stability; Intercalation pseudocapacitive behavior; Phosphating; Vanadium oxides; Zinc-ion battery; CATHODE MATERIALS; INTERCALATION; STORAGE;
D O I
10.1016/j.cej.2023.144571
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vanadium oxides are vital electrode material for zinc-ion batteries (ZIBs). However, the structural instability of vanadium oxides and sluggish reaction kinetics of large radius Zn2+ hinder the development of ZIBs. In this work, interlayer engineering and intercalation pseudocapacitance are adopted by phosphating to obtain modified NH4V4O10 with a stable structure, stronger intercalation pseudocapacitive behavior, and high reversibility for ion transportation. The phosphating introduces phosphate groups and oxygen vacancies in the lattice of NH4V4O10. The phosphate groups strengthen the connection between [VO] layers and immobilize the intrinsic interlayer NH4+ through electrostatic interaction to inhibit the irreversible transport of NH4+. The phosphating treatment disorders the crystal structure of the material and enlarges the crystal plane spacing to accelerate the diffusion of the ions, leading to high reversibility and structural stability, which prevents the irreversible phase transition of active material to inactive by-product during the cycle. Combined with the kinetics analysis and density functional theory (DFT), the phosphating enhances the intercalation pseudocapacitive response (pseudocapacitive contribution of 84.9%), reduces the migration barrier of Zn2+, as well as improves the electronic conductivity of cathode and affords extra electrons for energy storage, thus resulting in superior performance. Therefore, the PNVO-2 electrode delivers a brilliant rate performance of 300.9 mAh g-1 at 10 A g-1, and high capacity retention of 92.3% after 7000 cycles at 10 A g-1. P-NVO-2 exhibits brilliant electrochemical performance when applied to the flexible soft-packaged battery, confirming the application potential. Therefore, the exploration of phosphating to vanadium oxides supplies a promising route for designing high-rate and long-cyclicality zinc-ion batteries.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Vanadium Pentoxide Nanofibers/Carbon Nanotubes Hybrid Film for High-Performance Aqueous Zinc-Ion Batteries
    Liu, Xianyu
    Ma, Liwen
    Du, Yehong
    Lu, Qiongqiong
    Yang, Aikai
    Wang, Xinyu
    NANOMATERIALS, 2021, 11 (04)
  • [42] Aluminium-doped vanadium nitride as cathode material for high-performance aqueous zinc-ion batteries
    Chen, Jiangjin
    Guo, Keyan
    Ren, Tianzi
    Feng, Guodong
    Guo, Wen
    Bao, Fuxi
    JOURNAL OF POWER SOURCES, 2025, 626
  • [43] K+-regulated vanadium oxide heterostructure enables high-performance aqueous zinc-ion batteries
    Li, Haibing
    Zhu, Liyun
    Fan, Weijun
    Xiao, Yi
    Wu, Jiadong
    Mi, Hongyu
    Zhang, Fumin
    Yang, Linyu
    CRYSTENGCOMM, 2024, : 191 - 201
  • [44] Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery
    Li, Wenjie
    Gao, Xu
    Chen, Zanyu
    Guo, Ruiting
    Zou, Guoqiang
    Hou, Hongshuai
    Deng, Wentao
    Ji, Xiaobo
    Zhao, Jia
    CHEMICAL ENGINEERING JOURNAL, 2020, 402 (402)
  • [45] Polyoxometalate solution passivation enabling dendrite-free and high-performance zinc anodes in aqueous zinc-ion batteries
    Sui, Bin-bin
    Sha, Lin
    Bao, Qing-peng
    Wang, Peng-fei
    Gong, Zhe
    Zhou, Ming-dong
    Shi, Fanian
    Zhu, Kai
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 669 : 886 - 895
  • [46] Highly-pseudocapacitive origin and design principles of MoS2 for high-performance aqueous zinc-ion storage
    Qiao, Sifan
    Zhang, Wei
    Gao, Yong
    Zhou, Xinyan
    Liang, Qing
    Xia, Zhenhai
    Yoo, Seung Jo
    Kim, Jin-Gyu
    Bondarchuk, Oleksandr
    Zhao, Zhenzhen
    Liu, Fuxi
    Ge, Xin
    Huang, Chengxiang
    Yang, He
    Pan, Hongge
    Zheng, Weitao
    ACTA MATERIALIA, 2024, 281
  • [47] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Xuechao Pu
    Baozheng Jiang
    Xianli Wang
    Wenbao Liu
    Liubing Dong
    Feiyu Kang
    Chengjun Xu
    Nano-Micro Letters, 2020, 12
  • [48] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Pu, Xuechao
    Jiang, Baozheng
    Wang, Xianli
    Liu, Wenbao
    Dong, Liubing
    Kang, Feiyu
    Xu, Chengjun
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [49] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Xuechao Pu
    Baozheng Jiang
    Xianli Wang
    Wenbao Liu
    Liubing Dong
    Feiyu Kang
    Chengjun Xu
    Nano-Micro Letters, 2020, 12 (11) : 130 - 144
  • [50] Design and Conformation of Separators for High-performance Aqueous Zinc-Ion Batteries
    Niu, Ben
    Luo, Die
    He, Xianru
    Wang, Xin
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (65)