Ceramic-in-polymer solid electrolyte reinforced by in-situ polymerization of PEGDA interlayer for lithium metal battery

被引:12
作者
He, Min [1 ]
Mo, Changyong [1 ]
Lu, Zecheng [1 ]
Huang, Yonghao [1 ]
Qiu, Zhancai [1 ]
Li, Weishan [1 ,2 ,3 ]
Liao, Youhao [1 ,2 ,3 ]
机构
[1] South China Normal Univ, Sch Chem, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Natl & Local Joint Engn Res Ctr MPTES High Energy, Engn Res Ctr MTEES, Minist Educ, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, Key Lab ETESPG GHEI, Guangzhou 510006, Peoples R China
关键词
Ceramic -in -polymer solid electrolyte; PEGDA interlayer; Protected lithium anode; In situ polymerization; Lithium metal batteries; INTERFACE; SAFE; DENSE;
D O I
10.1016/j.ssi.2023.116217
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The solid electrolyte -is regarded as the proprietary electrolyte to solve the safety problem of high-energy-density lithium metal batteries (LMBs). Combined with the both advantages of inorganic ceramic and polymer electrolytes, the ceramic-in-polymer solid electrolyte of 15 wt% Li0.33La0.557TiO3-in-poly(vinylidene fluoride-cohexafiuoropropylene) (LLTO-in-P(VdF-HFP)) is proposed. Since the severe lithiation reaction between LLTO ceramic and lithium metal anode, in situ polymerization of degradable poly(ethylene glycol) diacrylate (PEGDA) as protective layer on the surface lithium metal is constructed, which not only effectively avoids the side reaction, but also suppresses the growth of lithium dendrites. Under the premise of ensuring the safety of solid state LMBs, trace liquid electrolyte is added into the electrolyte/electrode interface to reduce solid-solid interfacial resistance. The unique design of solid electrolyte combined with protective lithium anode is beneficial to the stable cycling of Li||Li symmetric cells for more than 700 h under current density of 0.2 mA cm-2, compared with only 200 h cycling life for the same electrolyte using the bare lithium anode. The assembled Li||LiNi0.6Co0.2Mn0.2O2 full-cell exhibits a specific discharge capacity of 176 mAh g-1 at 0.2C rate between 3.0 and 4.35 V, maintaining 90.6% of initial capacity after 200 cycles. Therefore, the developed solid electrolyte with unique protected lithium anode exhibits potential application in high-energy-density solid LMBs.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Poly(ionic liquid)-functionalized graphene oxide towards ambient temperature operation of all-solid-state PEO-based polymer electrolyte lithium metal batteries [J].
Bao, Wei ;
Hu, Zhenyuan ;
Wang, Yaying ;
Jiang, Jianghong ;
Huo, Shikang ;
Fan, Weizhen ;
Chen, Weijie ;
Jing, Xiao ;
Long, Xinyang ;
Zhang, Yunfeng .
CHEMICAL ENGINEERING JOURNAL, 2022, 437
[2]   Highly Stable Quasi-Solid-State Lithium Metal Batteries: Reinforced Li1.3Al0.3Ti1.7(PO4)3/Li Interface by a Protection Interlayer [J].
Chen, Zhen ;
Kim, Guk-Tae ;
Kim, Jae-Kwang ;
Zarrabeitia, Maider ;
Kuenzel, Matthias ;
Liang, Hai-Peng ;
Geiger, Dorin ;
Kaiser, Ute ;
Passerini, Stefano .
ADVANCED ENERGY MATERIALS, 2021, 11 (30)
[3]   In situ generated polymer electrolyte coating-based Janus interfaces for long-life LAGP-based NMC811/Li metal batteries [J].
Chen, Zhou ;
Zhang, Huanrui ;
Xu, Hantao ;
Dong, Shanmu ;
Jiang, Meifang ;
Li, Zhongtao ;
Cui, Guanglei .
CHEMICAL ENGINEERING JOURNAL, 2022, 433
[4]   Non-flammable super-concentrated polymer electrolyte with "solvated ionic liquid" for lithium-ion batteries [J].
Ding, Dong ;
Maeyoshi, Yuta ;
Kubota, Masaaki ;
Wakasugi, Jungo ;
Kanamura, Kiyoshi ;
Abe, Hidetoshi .
JOURNAL OF POWER SOURCES, 2021, 506
[5]   New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries [J].
Guo, Qingpeng ;
Han, Yu ;
Wang, Hui ;
Xiong, Shizhao ;
Li, Yujie ;
Liu, Shuangke ;
Xie, Kai .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (48) :41837-41844
[6]   Li6.7La3Zr1.7Ta0.3O12 Reinforced PEO/PVDF-HFP Based Composite Solid Electrolyte for All Solid-State Lithium Metal Battery [J].
Huang, Jiaxin ;
Huang, Ying ;
Zhang, Zheng ;
Gao, Heng ;
Li, Chao .
ENERGY & FUELS, 2020, 34 (11) :15011-15018
[7]   Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte: Sintering, microstructure, performance and the role of MgO [J].
Huang, Xiao ;
Lu, Yang ;
Song, Zhen ;
Xiu, Tongping ;
Badding, Michael E. ;
Wen, Zhaoyin .
JOURNAL OF ENERGY CHEMISTRY, 2019, 39 :8-16
[8]   Polydopamine Coated Lithium Lanthanum Titanate in Bilayer Membrane Electrolytes for Solid Lithium Batteries [J].
Jia, Mengyang ;
Bi, Zhijie ;
Shi, Chuan ;
Zhao, Ning ;
Guo, Xiangxin .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (41) :46231-46238
[9]   Ultrathin polymer-in-ceramic and ceramic-in-polymer bilayer composite solid electrolyte membrane for high-voltage lithium metal batteries [J].
Jiang, Hao ;
Wu, Yueyue ;
Ma, Jian ;
Liu, Yongchao ;
Wang, Lulu ;
Yao, Xin ;
Xiang, Hongfa .
JOURNAL OF MEMBRANE SCIENCE, 2021, 640
[10]  
Kumar K.M.J., 2020, J ALLOY COMPD, V834