共 50 条
CO2, CH4, and H2 Adsorption Performance of the Metal-Organic Framework HKUST-1 by Modified Synthesis Strategies
被引:16
|作者:
Abid, Hussein Rasool
[2
,3
,4
]
Hanif, Aamir
[1
]
Keshavarz, Alireza
[2
,3
]
Shang, Jin
[1
]
Iglauer, Stefan
[2
,3
]
机构:
[1] City Univ Hong Kong, Sch Energy & Environm, Kowloon, Hong Kong 000000, Peoples R China
[2] Edith Cowan Univ, Sch Engn, Petr Engn Discipline, Joondalup, WA 6027, Australia
[3] Edith Cowan Univ, Ctr Sustainable Energy & Resources, Joondalup, WA 6027, Australia
[4] Univ Karbala, Appl Med Sci Coll, Environm Dept, Karbala 56001, Iraq
关键词:
CU-BTC;
HYDROGEN STORAGE;
METHANE STORAGE;
CARBON-DIOXIDE;
SEPARATION;
GAS;
MIXTURES;
CU-3(BTC)(2);
CAPTURE;
CO2/CH4;
D O I:
10.1021/acs.energyfuels.2c04303
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
High-pressure adsorption of CO2, H2, and CH4 has several applications, including CO2 capture, methane, and hydrogen storage. The performance ultimately depends on the adsorbent design. Herein, we report a comparative assessment of a Cu-metal-organic framework (MOF) (HKUST-1) by conventional hydrothermal synthesis and its modified analogues, HKUST-N with NH4OH and HKUST-Ca with Ca(NO3)2, for CO2, CH4, and H2 adsorption. The materials showed high CO2 (12 mol/Kg), CH4 (2.5-4 mol/Kg), and H2 (0.4-0.8 mol/Kg) capacities at 50 bar. Owing to different synthesis strategies, the differences in surface area, pore size distribution, morphology, and the presence of calcium species in HKUST-Ca considerably impacted CH4 and H2 adsorption, leading to considerable differences in selectivities for various gas mixtures. This work establishes a clear correlation of subtle modifications in synthesis strategies of the MOF HKUST-1 on its morphological characteristics and CO2, CH4, and H2 adsorption performance.
引用
收藏
页码:7260 / 7267
页数:8
相关论文