Stability of traveling wave solutions for the second-order Camassa-Holm equation

被引:0
作者
Ding, Danping [1 ]
Li, Yun [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Xuefu Rd, Zhenjiang 212013, Jiangsu, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 202卷 / 04期
关键词
Second-order Camassa-Holm equation; Travelling wave solution; Orbital stability; Pseudo-conformal transformation; Smoothing; ORBITAL STABILITY; DIFFEOMORPHISM GROUP; PEAKONS; SOLITONS;
D O I
10.1007/s00605-023-01828-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the stability of traveling wave solutions of the second-order Camassa-Holm equation. Applying the pseudo-conformal transformation, the solutions near the travelling wave solutions of the second-order C-H equation are decomposed: lambda(1/2) (t) u (t, y + x (t)) = eta (t, y) + Q (y) .The uniform boundedness of the difference term is proved by smoothing technique, and the orbital stability of the traveling wave solution of the second-order C-H equation is obtained.
引用
收藏
页码:713 / 740
页数:28
相关论文
共 24 条
[11]   Conservative solutions for higher-order Camassa-Holm equations [J].
Ding, Danping ;
Lv, Peng .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (07)
[12]  
Guo ZG., 2018, J NONLINEAR SCI, V38, P5505
[13]   Stability of peakons for the generalized modified Camassa-Holm equation [J].
Guo, Zihua ;
Liu, Xiaochuan ;
Liu, Xingxing ;
Qu, Changzheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (12) :7749-7779
[14]  
Korteweg D.J., 1895, PHILOS MAG, V39, P422, DOI DOI 10.1080/14786449508620739
[15]   Traveling wave solutions of the Camassa-Holm equation [J].
Lenells, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 217 (02) :393-430
[16]   Stability of Solitary Waves for the Modified Camassa-Holm Equation [J].
Li, Ji ;
Liu, Yue .
ANNALS OF PDE, 2021, 7 (02)
[17]   The orbital stability of the solitary wave solutions of the generalized Camassa-Holm equation [J].
Liu, Xiaohua ;
Zhang, Weiguo ;
Li, Zhengming .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (02) :776-784
[18]   ORBITAL STABILITY OF PEAKONS FOR A MODIFIED CAMASSA-HOLM EQUATION WITH HIGHER-ORDER NONLINEARITY [J].
Liu, Xingxing .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (11) :5505-5521
[19]   Stability of periodic peakons for the modified μ-Camassa-Holm equation [J].
Liu, Yue ;
Qu, Changzheng ;
Zhang, Ying .
PHYSICA D-NONLINEAR PHENOMENA, 2013, 250 :66-74
[20]   Instability of solitons for the critical generalized Korteweg-de Vries equation [J].
Martel, Y ;
Merle, F .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (01) :74-123