Stability of traveling wave solutions for the second-order Camassa-Holm equation

被引:0
作者
Ding, Danping [1 ]
Li, Yun [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Xuefu Rd, Zhenjiang 212013, Jiangsu, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 202卷 / 04期
关键词
Second-order Camassa-Holm equation; Travelling wave solution; Orbital stability; Pseudo-conformal transformation; Smoothing; ORBITAL STABILITY; DIFFEOMORPHISM GROUP; PEAKONS; SOLITONS;
D O I
10.1007/s00605-023-01828-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the stability of traveling wave solutions of the second-order Camassa-Holm equation. Applying the pseudo-conformal transformation, the solutions near the travelling wave solutions of the second-order C-H equation are decomposed: lambda(1/2) (t) u (t, y + x (t)) = eta (t, y) + Q (y) .The uniform boundedness of the difference term is proved by smoothing technique, and the orbital stability of the traveling wave solution of the second-order C-H equation is obtained.
引用
收藏
页码:713 / 740
页数:28
相关论文
共 24 条
[1]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[2]  
Chen A., 2021, MONATSH MATH, P1
[3]   Well-posedness of higher-order Camassa-Holm equations [J].
Coclite, G. M. ;
Holden, H. ;
Kadsen, K. H. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :929-963
[4]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[5]   Integrability of invariant metrics on the diffeomorphism group of the circle [J].
Constantin, A ;
Kolev, B .
JOURNAL OF NONLINEAR SCIENCE, 2006, 16 (02) :109-122
[6]   Geodesic flow on the diffeomorphism group of the circle [J].
Constantin, A ;
Kolev, B .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :787-804
[7]   Blow-up solution near the traveling waves for the second-order Camassa-Holm equation [J].
Ding, Danping ;
Wang, Kai .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 58
[8]   Decay property of solutions near the traveling wave solutions for the second-order Camassa-Holm equation [J].
Ding, Danping ;
Wang, Kai .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 183 :230-258
[9]   Lipschitz metric for the periodic second-order Camassa Holm equation [J].
Ding, Danping ;
Zhang, Shuanghua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 451 (02) :990-1025
[10]   Traveling solutions and evolution properties of the higher order Camassa-Holm equation [J].
Ding, Danping .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 152 :1-11