When case reporting becomes untenable: Can sewer networks tell us where COVID-19 transmission occurs?

被引:7
作者
Wang, Yuke [1 ]
Liu, Pengbo [1 ]
VanTassell, Jamie [1 ]
Hilton, Stephen P. [1 ]
Guo, Lizheng [1 ]
Sablon, Orlando [1 ]
Wolfe, Marlene [1 ]
Freeman, Lorenzo [2 ]
Rose, Wayne [2 ]
Holt, Carl [2 ]
Browning, Mikita [2 ]
Bryan, Michael [3 ]
Waller, Lance [4 ]
Teunis, Peter F. M. [1 ]
Moe, Christine L. [1 ]
机构
[1] Emory Univ, Ctr Global Safe Water Sanitat & Hyg, Rollins Sch Publ Hlth, Hubert Dept Global Hlth, 1518 Clifton Rd NE,CNR6040B, Atlanta, GA 30322 USA
[2] City Atlanta Dept Watershed Management, Atlanta, GA 30303 USA
[3] Georgia Dept Publ Hlth, Atlanta, GA 30303 USA
[4] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
COVID-19; Wastewater surveillance; Sampling design; Community level; Hotspot; Adaptive sampling; SURVEILLANCE;
D O I
10.1016/j.watres.2022.119516
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Monitoring SARS-CoV-2 in wastewater is a valuable approach to track COVID-19 transmission. Designing wastewater surveillance (WWS) with representative sampling sites and quantifiable results requires knowledge of the sewerage system and virus fate and transport. We developed a multi-level WWS system to track COVID-19 in Atlanta using an adaptive nested sampling strategy. From March 2021 to April 2022, 868 wastewater samples were collected from influent lines to wastewater treatment facilities and upstream community manholes. Variations in SARS-CoV-2 concentrations in influent line samples preceded similar variations in numbers of reported COVID-19 cases in the corresponding catchment areas. Community sites under nested sampling represented mutually-exclusive catchment areas. Community sites with high SARS-CoV-2 detection rates in wastewater covered high COVID-19 incidence areas, and adaptive sampling enabled identification and tracing of COVID-19 hotspots. This study demonstrates how a well-designed WWS provides actionable information including early warning of surges in cases and identification of disease hotspots.
引用
收藏
页数:12
相关论文
共 49 条
[11]   Identification of sampling points for the detection of SARS-CoV-2 in the sewage system [J].
Domokos, Endre ;
Sebestyen, Viktor ;
Somogyi, Viola ;
Trajer, Attila Janos ;
Gerencser-Berta, Renata ;
Horvath, Borbala Olahne ;
Toth, Endre Gabor ;
Jakab, Ferenc ;
Kemenesi, Gabor ;
Abonyi, Janos .
SUSTAINABLE CITIES AND SOCIETY, 2022, 76
[12]   Evaluation of Sampling, Analysis, and Normalization Methods for SARS-CoV-2 Concentrations in Wastewater to Assess COVID-19 Burdens in Wisconsin Communities [J].
Feng, Shuchen ;
Roguet, Adelaide ;
McClary-Gutierrez, Jill S. ;
Newton, Ryan J. ;
Kloczko, Nathan ;
Meiman, Jonathan G. ;
McLellan, Sandra L. .
ACS ES&T WATER, 2021, 1 (08) :1955-1965
[13]   Implementing building-level SARS-CoV-2 wastewater surveillance on a university campus [J].
Gibas, Cynthia ;
Lambirth, Kevin ;
Mittal, Neha ;
Juel, Md Ariful Islam ;
Barua, Visva Bharati ;
Brazell, Lauren Roppolo ;
Hinton, Keshawn ;
Lontai, Jordan ;
Stark, Nicholas ;
Young, Isaiah ;
Quach, Cristine ;
Russ, Morgan ;
Kauer, Jacob ;
Nicolosi, Bridgette ;
Chen, Don ;
Akella, Srinivas ;
Tang, Wenwu ;
Schlueter, Jessica ;
Munir, Mariya .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 782
[14]   COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology [J].
Gonzalez, Raul ;
Curtis, Kyle ;
Bivins, Aaron ;
Bibby, Kyle ;
Weir, Mark H. ;
Yetka, Kathleen ;
Thompson, Hannah ;
Keeling, David ;
Mitchell, Jamie ;
Gonzalez, Dana .
WATER RESEARCH, 2020, 186
[15]   Spatial and temporal variability and data bias in wastewater surveillance of SARS-CoV-2 in a sewer system [J].
Haak, Laura ;
Delic, Blaga ;
Li, Lin ;
Guarin, Tatiana ;
Mazurowski, Lauren ;
Dastjerdi, Niloufar Gharoon ;
Dewan, Aimee ;
Pagilla, Krishna .
SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 805
[16]   Detection of Pathogenic Viruses in Sewage Provided Early Warnings of Hepatitis A Virus and Norovirus Outbreaks [J].
Hellmer, Maria ;
Paxeus, Nicklas ;
Magnius, Lars ;
Enache, Lucica ;
Arnholm, Birgitta ;
Johansson, Annette ;
Bergstrom, Tomas ;
Norder, Helene .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2014, 80 (21) :6771-6781
[17]   Role of environmental poliovirus surveillance in global polio eradication and beyond [J].
Hovi, T. ;
Shulman, L. M. ;
Van der Avoort, H. ;
Deshpande, J. ;
Roivainen, M. ;
De Gourville, E. M. .
EPIDEMIOLOGY AND INFECTION, 2012, 140 (01) :1-13
[18]   Ethics Guidance for Environmental Scientists Engaged in Surveillance of Wastewater for SARS-CoV-2 [J].
Hrudey, Steve E. ;
Silva, Diego S. ;
Shelley, Jacob ;
Pons, Wendy ;
Isaac-Renton, Judy ;
Chik, Alex Ho-Shing ;
Conant, Bernadette .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (13) :8484-8491
[19]  
Hughes M.M., 2021, US
[20]   Monitoring SARS-CoV-2 Circulation and Diversity through Community Wastewater Sequencing, the Netherlands and Belgium [J].
Izquierdo-Lara, Ray ;
Elsinga, Goffe ;
Heijnen, Leo ;
Munnink, Bas B. Oude ;
Schapendonk, Claudia M. E. ;
Nieuwenhuijse, David ;
Kon, Matthijs ;
Lu, Lu ;
Aarestrup, Frank M. ;
Lycett, Samantha ;
Medema, Gertjan ;
Koopmans, Marion P. G. ;
de Graaf, Miranda .
EMERGING INFECTIOUS DISEASES, 2021, 27 (05) :1405-1415